|
--- |
|
license: other |
|
base_model: nvidia/mit-b0 |
|
tags: |
|
- vision |
|
- image-segmentation |
|
- generated_from_trainer |
|
model-index: |
|
- name: segformer-b0-finetuned-segments-greenhouse-jun-24 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# segformer-b0-finetuned-segments-greenhouse-jun-24 |
|
|
|
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6502 |
|
- Mean Iou: 0.3640 |
|
- Mean Accuracy: 0.4319 |
|
- Overall Accuracy: 0.8283 |
|
- Accuracy Unlabeled: nan |
|
- Accuracy Object: 0.0 |
|
- Accuracy Road: 0.9324 |
|
- Accuracy Plant: 0.8871 |
|
- Accuracy Iron: 0.0017 |
|
- Accuracy Wood: nan |
|
- Accuracy Wall: 0.7226 |
|
- Accuracy Raw Road: 0.9465 |
|
- Accuracy Bottom Wall: 0.0 |
|
- Accuracy Roof: 0.0 |
|
- Accuracy Grass: nan |
|
- Accuracy Mulch: 0.8289 |
|
- Accuracy Person: nan |
|
- Accuracy Tomato: 0.0 |
|
- Iou Unlabeled: nan |
|
- Iou Object: 0.0 |
|
- Iou Road: 0.7525 |
|
- Iou Plant: 0.7027 |
|
- Iou Iron: 0.0017 |
|
- Iou Wood: nan |
|
- Iou Wall: 0.5584 |
|
- Iou Raw Road: 0.8998 |
|
- Iou Bottom Wall: 0.0 |
|
- Iou Roof: 0.0 |
|
- Iou Grass: nan |
|
- Iou Mulch: 0.7252 |
|
- Iou Person: nan |
|
- Iou Tomato: 0.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 6e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Object | Accuracy Road | Accuracy Plant | Accuracy Iron | Accuracy Wood | Accuracy Wall | Accuracy Raw Road | Accuracy Bottom Wall | Accuracy Roof | Accuracy Grass | Accuracy Mulch | Accuracy Person | Accuracy Tomato | Iou Unlabeled | Iou Object | Iou Road | Iou Plant | Iou Iron | Iou Wood | Iou Wall | Iou Raw Road | Iou Bottom Wall | Iou Roof | Iou Grass | Iou Mulch | Iou Person | Iou Tomato | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:---------------:|:-------------:|:--------------:|:-------------:|:-------------:|:-------------:|:-----------------:|:--------------------:|:-------------:|:--------------:|:--------------:|:---------------:|:---------------:|:-------------:|:----------:|:--------:|:---------:|:--------:|:--------:|:--------:|:------------:|:---------------:|:--------:|:---------:|:---------:|:----------:|:----------:| |
|
| 1.9416 | 1.05 | 20 | 2.3650 | 0.1880 | 0.3464 | 0.6650 | nan | 0.0 | 0.7192 | 0.7931 | 0.2656 | nan | 0.0681 | 0.8201 | 0.0 | 0.0 | nan | 0.7950 | nan | 0.0029 | nan | 0.0 | 0.4874 | 0.5054 | 0.1242 | 0.0 | 0.0676 | 0.8065 | 0.0 | 0.0 | 0.0 | 0.4498 | 0.0 | 0.0027 | |
|
| 1.4047 | 2.11 | 40 | 1.6208 | 0.2889 | 0.3699 | 0.7203 | nan | 0.0 | 0.7452 | 0.8135 | 0.0384 | nan | 0.4353 | 0.8655 | 0.0 | 0.0 | nan | 0.8014 | nan | 0.0 | nan | 0.0 | 0.4970 | 0.5407 | 0.0371 | nan | 0.4041 | 0.8614 | 0.0 | 0.0 | nan | 0.5489 | nan | 0.0 | |
|
| 1.4998 | 3.16 | 60 | 1.2645 | 0.3150 | 0.3936 | 0.7522 | nan | 0.0 | 0.7532 | 0.8121 | 0.0174 | nan | 0.6304 | 0.9056 | 0.0 | 0.0 | nan | 0.8171 | nan | 0.0 | nan | 0.0 | 0.5316 | 0.5644 | 0.0174 | nan | 0.5346 | 0.8961 | 0.0 | 0.0 | nan | 0.6057 | nan | 0.0 | |
|
| 1.0844 | 4.21 | 80 | 1.1551 | 0.3234 | 0.4083 | 0.7685 | nan | 0.0 | 0.8290 | 0.7952 | 0.0230 | nan | 0.6585 | 0.9033 | 0.0 | 0.0 | nan | 0.8740 | nan | 0.0 | nan | 0.0 | 0.5971 | 0.5910 | 0.0229 | nan | 0.5307 | 0.8905 | 0.0 | 0.0 | nan | 0.6020 | nan | 0.0 | |
|
| 1.2949 | 5.26 | 100 | 1.0333 | 0.3363 | 0.4129 | 0.7841 | nan | 0.0 | 0.8274 | 0.8389 | 0.0140 | nan | 0.7114 | 0.9133 | 0.0 | 0.0 | nan | 0.8243 | nan | 0.0 | nan | 0.0 | 0.6211 | 0.6125 | 0.0140 | nan | 0.5854 | 0.8890 | 0.0 | 0.0 | nan | 0.6410 | nan | 0.0 | |
|
| 1.3389 | 6.32 | 120 | 0.9260 | 0.3417 | 0.4155 | 0.7932 | nan | 0.0 | 0.8668 | 0.8408 | 0.0 | nan | 0.7105 | 0.9202 | 0.0 | 0.0 | nan | 0.8164 | nan | 0.0 | nan | 0.0 | 0.6489 | 0.6214 | 0.0 | nan | 0.6039 | 0.8936 | 0.0 | 0.0 | nan | 0.6495 | nan | 0.0 | |
|
| 0.7833 | 7.37 | 140 | 0.9264 | 0.3357 | 0.4075 | 0.7871 | nan | 0.0 | 0.8811 | 0.8468 | 0.0 | nan | 0.6389 | 0.9125 | 0.0 | 0.0 | nan | 0.7963 | nan | 0.0 | nan | 0.0 | 0.6176 | 0.6285 | 0.0 | nan | 0.5777 | 0.8915 | 0.0 | 0.0 | nan | 0.6419 | nan | 0.0 | |
|
| 1.0194 | 8.42 | 160 | 0.8761 | 0.3499 | 0.4231 | 0.8038 | nan | 0.0 | 0.8549 | 0.8586 | 0.0 | nan | 0.7365 | 0.9299 | 0.0 | 0.0 | nan | 0.8508 | nan | 0.0 | nan | 0.0 | 0.6797 | 0.6342 | 0.0 | nan | 0.6119 | 0.8995 | 0.0 | 0.0 | nan | 0.6738 | nan | 0.0 | |
|
| 0.5558 | 9.47 | 180 | 0.8468 | 0.3458 | 0.4174 | 0.7981 | nan | 0.0 | 0.8533 | 0.8817 | 0.0 | nan | 0.6946 | 0.9063 | 0.0 | 0.0 | nan | 0.8381 | nan | 0.0 | nan | 0.0 | 0.6659 | 0.6338 | 0.0 | nan | 0.6155 | 0.8865 | 0.0 | 0.0 | nan | 0.6564 | nan | 0.0 | |
|
| 1.2579 | 10.53 | 200 | 0.7776 | 0.3502 | 0.4184 | 0.8047 | nan | 0.0 | 0.8678 | 0.8680 | 0.0 | nan | 0.6966 | 0.9388 | 0.0 | 0.0 | nan | 0.8131 | nan | 0.0 | nan | 0.0 | 0.6432 | 0.6556 | 0.0 | nan | 0.6191 | 0.8990 | 0.0 | 0.0 | nan | 0.6852 | nan | 0.0 | |
|
| 0.7671 | 11.58 | 220 | 0.7935 | 0.3579 | 0.4276 | 0.8152 | nan | 0.0 | 0.8816 | 0.8768 | 0.0 | nan | 0.7413 | 0.9356 | 0.0 | 0.0 | nan | 0.8410 | nan | 0.0 | nan | 0.0 | 0.6987 | 0.6610 | 0.0 | nan | 0.6315 | 0.9022 | 0.0 | 0.0 | nan | 0.6857 | nan | 0.0 | |
|
| 0.5097 | 12.63 | 240 | 0.7718 | 0.3549 | 0.4262 | 0.8129 | nan | 0.0 | 0.9047 | 0.8658 | 0.0 | nan | 0.7146 | 0.9298 | 0.0 | 0.0 | nan | 0.8467 | nan | 0.0 | nan | 0.0 | 0.6773 | 0.6707 | 0.0 | nan | 0.6172 | 0.9016 | 0.0 | 0.0 | nan | 0.6818 | nan | 0.0 | |
|
| 0.624 | 13.68 | 260 | 0.7270 | 0.3609 | 0.4282 | 0.8228 | nan | 0.0 | 0.8772 | 0.9219 | 0.0004 | nan | 0.7225 | 0.9308 | 0.0 | 0.0 | nan | 0.8291 | nan | 0.0 | nan | 0.0 | 0.7310 | 0.6897 | 0.0004 | nan | 0.5916 | 0.8975 | 0.0 | 0.0 | nan | 0.6988 | nan | 0.0 | |
|
| 0.535 | 14.74 | 280 | 0.7681 | 0.3526 | 0.4243 | 0.8085 | nan | 0.0 | 0.9574 | 0.8230 | 0.0009 | nan | 0.7059 | 0.9289 | 0.0 | 0.0 | nan | 0.8268 | nan | 0.0 | nan | 0.0 | 0.6786 | 0.6512 | 0.0009 | nan | 0.6011 | 0.9014 | 0.0 | 0.0 | nan | 0.6930 | nan | 0.0 | |
|
| 0.6093 | 15.79 | 300 | 0.6960 | 0.3636 | 0.4349 | 0.8257 | nan | 0.0 | 0.9296 | 0.8704 | 0.0102 | nan | 0.7227 | 0.9435 | 0.0 | 0.0 | nan | 0.8722 | nan | 0.0 | nan | 0.0 | 0.7270 | 0.6943 | 0.0102 | nan | 0.5991 | 0.9034 | 0.0 | 0.0 | nan | 0.7024 | nan | 0.0 | |
|
| 0.5584 | 16.84 | 320 | 0.6886 | 0.3671 | 0.4368 | 0.8281 | nan | 0.0 | 0.9186 | 0.8889 | 0.0157 | nan | 0.7333 | 0.9371 | 0.0 | 0.0 | nan | 0.8739 | nan | 0.0 | nan | 0.0 | 0.7428 | 0.6928 | 0.0157 | nan | 0.6008 | 0.9040 | 0.0 | 0.0 | nan | 0.7148 | nan | 0.0 | |
|
| 0.4421 | 17.89 | 340 | 0.6946 | 0.3644 | 0.4336 | 0.8238 | nan | 0.0 | 0.9061 | 0.8956 | 0.0308 | nan | 0.7280 | 0.9336 | 0.0 | 0.0 | nan | 0.8422 | nan | 0.0 | nan | 0.0 | 0.7217 | 0.6974 | 0.0308 | nan | 0.5717 | 0.9021 | 0.0 | 0.0 | nan | 0.7199 | nan | 0.0 | |
|
| 0.7997 | 18.95 | 360 | 0.7025 | 0.3580 | 0.4266 | 0.8172 | nan | 0.0 | 0.8983 | 0.8901 | 0.0075 | nan | 0.6955 | 0.9330 | 0.0 | 0.0 | nan | 0.8415 | nan | 0.0 | nan | 0.0 | 0.7140 | 0.6754 | 0.0075 | nan | 0.5592 | 0.9020 | 0.0 | 0.0 | nan | 0.7216 | nan | 0.0 | |
|
| 0.8388 | 20.0 | 380 | 0.6959 | 0.3632 | 0.4366 | 0.8242 | nan | 0.0 | 0.9513 | 0.8467 | 0.0120 | nan | 0.7460 | 0.9393 | 0.0 | 0.0 | nan | 0.8710 | nan | 0.0 | nan | 0.0 | 0.7218 | 0.6943 | 0.0120 | nan | 0.5799 | 0.9040 | 0.0 | 0.0 | nan | 0.7199 | nan | 0.0 | |
|
| 0.6424 | 21.05 | 400 | 0.6728 | 0.3651 | 0.4285 | 0.8280 | nan | 0.0 | 0.8680 | 0.9419 | 0.0007 | nan | 0.7148 | 0.9412 | 0.0 | 0.0 | nan | 0.8186 | nan | 0.0 | nan | 0.0 | 0.7527 | 0.6967 | 0.0007 | nan | 0.5737 | 0.9026 | 0.0 | 0.0 | nan | 0.7249 | nan | 0.0 | |
|
| 0.3287 | 22.11 | 420 | 0.6786 | 0.3621 | 0.4314 | 0.8247 | nan | 0.0 | 0.9357 | 0.8771 | 0.0053 | nan | 0.7122 | 0.9410 | 0.0 | 0.0 | nan | 0.8427 | nan | 0.0 | nan | 0.0 | 0.7335 | 0.6949 | 0.0053 | nan | 0.5626 | 0.9025 | 0.0 | 0.0 | nan | 0.7222 | nan | 0.0 | |
|
| 0.386 | 23.16 | 440 | 0.6603 | 0.3667 | 0.4354 | 0.8295 | nan | 0.0 | 0.9165 | 0.9030 | 0.0122 | nan | 0.7266 | 0.9361 | 0.0 | 0.0 | nan | 0.8593 | nan | 0.0 | nan | 0.0 | 0.7526 | 0.7050 | 0.0122 | nan | 0.5635 | 0.9033 | 0.0 | 0.0 | nan | 0.7301 | nan | 0.0 | |
|
| 0.3378 | 24.21 | 460 | 0.6791 | 0.3644 | 0.4331 | 0.8265 | nan | 0.0 | 0.9426 | 0.8772 | 0.0103 | nan | 0.7197 | 0.9405 | 0.0 | 0.0 | nan | 0.8403 | nan | 0.0 | nan | 0.0 | 0.7441 | 0.6939 | 0.0103 | nan | 0.5636 | 0.9039 | 0.0 | 0.0 | nan | 0.7284 | nan | 0.0 | |
|
| 0.3678 | 25.26 | 480 | 0.6915 | 0.3633 | 0.4342 | 0.8227 | nan | 0.0 | 0.9479 | 0.8577 | 0.0234 | nan | 0.7165 | 0.9384 | 0.0 | 0.0 | nan | 0.8579 | nan | 0.0 | nan | 0.0 | 0.7171 | 0.6910 | 0.0234 | nan | 0.5647 | 0.9051 | 0.0 | 0.0 | nan | 0.7320 | nan | 0.0 | |
|
| 0.328 | 26.32 | 500 | 0.6879 | 0.3662 | 0.4360 | 0.8259 | nan | 0.0 | 0.9434 | 0.8741 | 0.0266 | nan | 0.7189 | 0.9346 | 0.0 | 0.0 | nan | 0.8627 | nan | 0.0 | nan | 0.0 | 0.7357 | 0.6927 | 0.0266 | nan | 0.5712 | 0.9042 | 0.0 | 0.0 | nan | 0.7316 | nan | 0.0 | |
|
| 0.8502 | 27.37 | 520 | 0.6593 | 0.3644 | 0.4332 | 0.8270 | nan | 0.0 | 0.9414 | 0.8739 | 0.0066 | nan | 0.7263 | 0.9446 | 0.0 | 0.0 | nan | 0.8390 | nan | 0.0 | nan | 0.0 | 0.7449 | 0.6962 | 0.0066 | nan | 0.5647 | 0.9020 | 0.0 | 0.0 | nan | 0.7294 | nan | 0.0 | |
|
| 0.3528 | 28.42 | 540 | 0.6777 | 0.3626 | 0.4305 | 0.8238 | nan | 0.0 | 0.9439 | 0.8717 | 0.0114 | nan | 0.7046 | 0.9429 | 0.0 | 0.0 | nan | 0.8307 | nan | 0.0 | nan | 0.0 | 0.7364 | 0.6872 | 0.0114 | nan | 0.5563 | 0.9029 | 0.0 | 0.0 | nan | 0.7320 | nan | 0.0 | |
|
| 0.5908 | 29.47 | 560 | 0.6502 | 0.3640 | 0.4319 | 0.8283 | nan | 0.0 | 0.9324 | 0.8871 | 0.0017 | nan | 0.7226 | 0.9465 | 0.0 | 0.0 | nan | 0.8289 | nan | 0.0 | nan | 0.0 | 0.7525 | 0.7027 | 0.0017 | nan | 0.5584 | 0.8998 | 0.0 | 0.0 | nan | 0.7252 | nan | 0.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.2 |
|
- Pytorch 2.0.1 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.13.3 |
|
|