File size: 17,625 Bytes
3e67c7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
license: other
base_model: nvidia/mit-b0
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b0-finetuned-segments-greenhouse-jun-24
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformer-b0-finetuned-segments-greenhouse-jun-24

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6502
- Mean Iou: 0.3640
- Mean Accuracy: 0.4319
- Overall Accuracy: 0.8283
- Accuracy Unlabeled: nan
- Accuracy Object: 0.0
- Accuracy Road: 0.9324
- Accuracy Plant: 0.8871
- Accuracy Iron: 0.0017
- Accuracy Wood: nan
- Accuracy Wall: 0.7226
- Accuracy Raw Road: 0.9465
- Accuracy Bottom Wall: 0.0
- Accuracy Roof: 0.0
- Accuracy Grass: nan
- Accuracy Mulch: 0.8289
- Accuracy Person: nan
- Accuracy Tomato: 0.0
- Iou Unlabeled: nan
- Iou Object: 0.0
- Iou Road: 0.7525
- Iou Plant: 0.7027
- Iou Iron: 0.0017
- Iou Wood: nan
- Iou Wall: 0.5584
- Iou Raw Road: 0.8998
- Iou Bottom Wall: 0.0
- Iou Roof: 0.0
- Iou Grass: nan
- Iou Mulch: 0.7252
- Iou Person: nan
- Iou Tomato: 0.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Object | Accuracy Road | Accuracy Plant | Accuracy Iron | Accuracy Wood | Accuracy Wall | Accuracy Raw Road | Accuracy Bottom Wall | Accuracy Roof | Accuracy Grass | Accuracy Mulch | Accuracy Person | Accuracy Tomato | Iou Unlabeled | Iou Object | Iou Road | Iou Plant | Iou Iron | Iou Wood | Iou Wall | Iou Raw Road | Iou Bottom Wall | Iou Roof | Iou Grass | Iou Mulch | Iou Person | Iou Tomato |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:---------------:|:-------------:|:--------------:|:-------------:|:-------------:|:-------------:|:-----------------:|:--------------------:|:-------------:|:--------------:|:--------------:|:---------------:|:---------------:|:-------------:|:----------:|:--------:|:---------:|:--------:|:--------:|:--------:|:------------:|:---------------:|:--------:|:---------:|:---------:|:----------:|:----------:|
| 1.9416        | 1.05  | 20   | 2.3650          | 0.1880   | 0.3464        | 0.6650           | nan                | 0.0             | 0.7192        | 0.7931         | 0.2656        | nan           | 0.0681        | 0.8201            | 0.0                  | 0.0           | nan            | 0.7950         | nan             | 0.0029          | nan           | 0.0        | 0.4874   | 0.5054    | 0.1242   | 0.0      | 0.0676   | 0.8065       | 0.0             | 0.0      | 0.0       | 0.4498    | 0.0        | 0.0027     |
| 1.4047        | 2.11  | 40   | 1.6208          | 0.2889   | 0.3699        | 0.7203           | nan                | 0.0             | 0.7452        | 0.8135         | 0.0384        | nan           | 0.4353        | 0.8655            | 0.0                  | 0.0           | nan            | 0.8014         | nan             | 0.0             | nan           | 0.0        | 0.4970   | 0.5407    | 0.0371   | nan      | 0.4041   | 0.8614       | 0.0             | 0.0      | nan       | 0.5489    | nan        | 0.0        |
| 1.4998        | 3.16  | 60   | 1.2645          | 0.3150   | 0.3936        | 0.7522           | nan                | 0.0             | 0.7532        | 0.8121         | 0.0174        | nan           | 0.6304        | 0.9056            | 0.0                  | 0.0           | nan            | 0.8171         | nan             | 0.0             | nan           | 0.0        | 0.5316   | 0.5644    | 0.0174   | nan      | 0.5346   | 0.8961       | 0.0             | 0.0      | nan       | 0.6057    | nan        | 0.0        |
| 1.0844        | 4.21  | 80   | 1.1551          | 0.3234   | 0.4083        | 0.7685           | nan                | 0.0             | 0.8290        | 0.7952         | 0.0230        | nan           | 0.6585        | 0.9033            | 0.0                  | 0.0           | nan            | 0.8740         | nan             | 0.0             | nan           | 0.0        | 0.5971   | 0.5910    | 0.0229   | nan      | 0.5307   | 0.8905       | 0.0             | 0.0      | nan       | 0.6020    | nan        | 0.0        |
| 1.2949        | 5.26  | 100  | 1.0333          | 0.3363   | 0.4129        | 0.7841           | nan                | 0.0             | 0.8274        | 0.8389         | 0.0140        | nan           | 0.7114        | 0.9133            | 0.0                  | 0.0           | nan            | 0.8243         | nan             | 0.0             | nan           | 0.0        | 0.6211   | 0.6125    | 0.0140   | nan      | 0.5854   | 0.8890       | 0.0             | 0.0      | nan       | 0.6410    | nan        | 0.0        |
| 1.3389        | 6.32  | 120  | 0.9260          | 0.3417   | 0.4155        | 0.7932           | nan                | 0.0             | 0.8668        | 0.8408         | 0.0           | nan           | 0.7105        | 0.9202            | 0.0                  | 0.0           | nan            | 0.8164         | nan             | 0.0             | nan           | 0.0        | 0.6489   | 0.6214    | 0.0      | nan      | 0.6039   | 0.8936       | 0.0             | 0.0      | nan       | 0.6495    | nan        | 0.0        |
| 0.7833        | 7.37  | 140  | 0.9264          | 0.3357   | 0.4075        | 0.7871           | nan                | 0.0             | 0.8811        | 0.8468         | 0.0           | nan           | 0.6389        | 0.9125            | 0.0                  | 0.0           | nan            | 0.7963         | nan             | 0.0             | nan           | 0.0        | 0.6176   | 0.6285    | 0.0      | nan      | 0.5777   | 0.8915       | 0.0             | 0.0      | nan       | 0.6419    | nan        | 0.0        |
| 1.0194        | 8.42  | 160  | 0.8761          | 0.3499   | 0.4231        | 0.8038           | nan                | 0.0             | 0.8549        | 0.8586         | 0.0           | nan           | 0.7365        | 0.9299            | 0.0                  | 0.0           | nan            | 0.8508         | nan             | 0.0             | nan           | 0.0        | 0.6797   | 0.6342    | 0.0      | nan      | 0.6119   | 0.8995       | 0.0             | 0.0      | nan       | 0.6738    | nan        | 0.0        |
| 0.5558        | 9.47  | 180  | 0.8468          | 0.3458   | 0.4174        | 0.7981           | nan                | 0.0             | 0.8533        | 0.8817         | 0.0           | nan           | 0.6946        | 0.9063            | 0.0                  | 0.0           | nan            | 0.8381         | nan             | 0.0             | nan           | 0.0        | 0.6659   | 0.6338    | 0.0      | nan      | 0.6155   | 0.8865       | 0.0             | 0.0      | nan       | 0.6564    | nan        | 0.0        |
| 1.2579        | 10.53 | 200  | 0.7776          | 0.3502   | 0.4184        | 0.8047           | nan                | 0.0             | 0.8678        | 0.8680         | 0.0           | nan           | 0.6966        | 0.9388            | 0.0                  | 0.0           | nan            | 0.8131         | nan             | 0.0             | nan           | 0.0        | 0.6432   | 0.6556    | 0.0      | nan      | 0.6191   | 0.8990       | 0.0             | 0.0      | nan       | 0.6852    | nan        | 0.0        |
| 0.7671        | 11.58 | 220  | 0.7935          | 0.3579   | 0.4276        | 0.8152           | nan                | 0.0             | 0.8816        | 0.8768         | 0.0           | nan           | 0.7413        | 0.9356            | 0.0                  | 0.0           | nan            | 0.8410         | nan             | 0.0             | nan           | 0.0        | 0.6987   | 0.6610    | 0.0      | nan      | 0.6315   | 0.9022       | 0.0             | 0.0      | nan       | 0.6857    | nan        | 0.0        |
| 0.5097        | 12.63 | 240  | 0.7718          | 0.3549   | 0.4262        | 0.8129           | nan                | 0.0             | 0.9047        | 0.8658         | 0.0           | nan           | 0.7146        | 0.9298            | 0.0                  | 0.0           | nan            | 0.8467         | nan             | 0.0             | nan           | 0.0        | 0.6773   | 0.6707    | 0.0      | nan      | 0.6172   | 0.9016       | 0.0             | 0.0      | nan       | 0.6818    | nan        | 0.0        |
| 0.624         | 13.68 | 260  | 0.7270          | 0.3609   | 0.4282        | 0.8228           | nan                | 0.0             | 0.8772        | 0.9219         | 0.0004        | nan           | 0.7225        | 0.9308            | 0.0                  | 0.0           | nan            | 0.8291         | nan             | 0.0             | nan           | 0.0        | 0.7310   | 0.6897    | 0.0004   | nan      | 0.5916   | 0.8975       | 0.0             | 0.0      | nan       | 0.6988    | nan        | 0.0        |
| 0.535         | 14.74 | 280  | 0.7681          | 0.3526   | 0.4243        | 0.8085           | nan                | 0.0             | 0.9574        | 0.8230         | 0.0009        | nan           | 0.7059        | 0.9289            | 0.0                  | 0.0           | nan            | 0.8268         | nan             | 0.0             | nan           | 0.0        | 0.6786   | 0.6512    | 0.0009   | nan      | 0.6011   | 0.9014       | 0.0             | 0.0      | nan       | 0.6930    | nan        | 0.0        |
| 0.6093        | 15.79 | 300  | 0.6960          | 0.3636   | 0.4349        | 0.8257           | nan                | 0.0             | 0.9296        | 0.8704         | 0.0102        | nan           | 0.7227        | 0.9435            | 0.0                  | 0.0           | nan            | 0.8722         | nan             | 0.0             | nan           | 0.0        | 0.7270   | 0.6943    | 0.0102   | nan      | 0.5991   | 0.9034       | 0.0             | 0.0      | nan       | 0.7024    | nan        | 0.0        |
| 0.5584        | 16.84 | 320  | 0.6886          | 0.3671   | 0.4368        | 0.8281           | nan                | 0.0             | 0.9186        | 0.8889         | 0.0157        | nan           | 0.7333        | 0.9371            | 0.0                  | 0.0           | nan            | 0.8739         | nan             | 0.0             | nan           | 0.0        | 0.7428   | 0.6928    | 0.0157   | nan      | 0.6008   | 0.9040       | 0.0             | 0.0      | nan       | 0.7148    | nan        | 0.0        |
| 0.4421        | 17.89 | 340  | 0.6946          | 0.3644   | 0.4336        | 0.8238           | nan                | 0.0             | 0.9061        | 0.8956         | 0.0308        | nan           | 0.7280        | 0.9336            | 0.0                  | 0.0           | nan            | 0.8422         | nan             | 0.0             | nan           | 0.0        | 0.7217   | 0.6974    | 0.0308   | nan      | 0.5717   | 0.9021       | 0.0             | 0.0      | nan       | 0.7199    | nan        | 0.0        |
| 0.7997        | 18.95 | 360  | 0.7025          | 0.3580   | 0.4266        | 0.8172           | nan                | 0.0             | 0.8983        | 0.8901         | 0.0075        | nan           | 0.6955        | 0.9330            | 0.0                  | 0.0           | nan            | 0.8415         | nan             | 0.0             | nan           | 0.0        | 0.7140   | 0.6754    | 0.0075   | nan      | 0.5592   | 0.9020       | 0.0             | 0.0      | nan       | 0.7216    | nan        | 0.0        |
| 0.8388        | 20.0  | 380  | 0.6959          | 0.3632   | 0.4366        | 0.8242           | nan                | 0.0             | 0.9513        | 0.8467         | 0.0120        | nan           | 0.7460        | 0.9393            | 0.0                  | 0.0           | nan            | 0.8710         | nan             | 0.0             | nan           | 0.0        | 0.7218   | 0.6943    | 0.0120   | nan      | 0.5799   | 0.9040       | 0.0             | 0.0      | nan       | 0.7199    | nan        | 0.0        |
| 0.6424        | 21.05 | 400  | 0.6728          | 0.3651   | 0.4285        | 0.8280           | nan                | 0.0             | 0.8680        | 0.9419         | 0.0007        | nan           | 0.7148        | 0.9412            | 0.0                  | 0.0           | nan            | 0.8186         | nan             | 0.0             | nan           | 0.0        | 0.7527   | 0.6967    | 0.0007   | nan      | 0.5737   | 0.9026       | 0.0             | 0.0      | nan       | 0.7249    | nan        | 0.0        |
| 0.3287        | 22.11 | 420  | 0.6786          | 0.3621   | 0.4314        | 0.8247           | nan                | 0.0             | 0.9357        | 0.8771         | 0.0053        | nan           | 0.7122        | 0.9410            | 0.0                  | 0.0           | nan            | 0.8427         | nan             | 0.0             | nan           | 0.0        | 0.7335   | 0.6949    | 0.0053   | nan      | 0.5626   | 0.9025       | 0.0             | 0.0      | nan       | 0.7222    | nan        | 0.0        |
| 0.386         | 23.16 | 440  | 0.6603          | 0.3667   | 0.4354        | 0.8295           | nan                | 0.0             | 0.9165        | 0.9030         | 0.0122        | nan           | 0.7266        | 0.9361            | 0.0                  | 0.0           | nan            | 0.8593         | nan             | 0.0             | nan           | 0.0        | 0.7526   | 0.7050    | 0.0122   | nan      | 0.5635   | 0.9033       | 0.0             | 0.0      | nan       | 0.7301    | nan        | 0.0        |
| 0.3378        | 24.21 | 460  | 0.6791          | 0.3644   | 0.4331        | 0.8265           | nan                | 0.0             | 0.9426        | 0.8772         | 0.0103        | nan           | 0.7197        | 0.9405            | 0.0                  | 0.0           | nan            | 0.8403         | nan             | 0.0             | nan           | 0.0        | 0.7441   | 0.6939    | 0.0103   | nan      | 0.5636   | 0.9039       | 0.0             | 0.0      | nan       | 0.7284    | nan        | 0.0        |
| 0.3678        | 25.26 | 480  | 0.6915          | 0.3633   | 0.4342        | 0.8227           | nan                | 0.0             | 0.9479        | 0.8577         | 0.0234        | nan           | 0.7165        | 0.9384            | 0.0                  | 0.0           | nan            | 0.8579         | nan             | 0.0             | nan           | 0.0        | 0.7171   | 0.6910    | 0.0234   | nan      | 0.5647   | 0.9051       | 0.0             | 0.0      | nan       | 0.7320    | nan        | 0.0        |
| 0.328         | 26.32 | 500  | 0.6879          | 0.3662   | 0.4360        | 0.8259           | nan                | 0.0             | 0.9434        | 0.8741         | 0.0266        | nan           | 0.7189        | 0.9346            | 0.0                  | 0.0           | nan            | 0.8627         | nan             | 0.0             | nan           | 0.0        | 0.7357   | 0.6927    | 0.0266   | nan      | 0.5712   | 0.9042       | 0.0             | 0.0      | nan       | 0.7316    | nan        | 0.0        |
| 0.8502        | 27.37 | 520  | 0.6593          | 0.3644   | 0.4332        | 0.8270           | nan                | 0.0             | 0.9414        | 0.8739         | 0.0066        | nan           | 0.7263        | 0.9446            | 0.0                  | 0.0           | nan            | 0.8390         | nan             | 0.0             | nan           | 0.0        | 0.7449   | 0.6962    | 0.0066   | nan      | 0.5647   | 0.9020       | 0.0             | 0.0      | nan       | 0.7294    | nan        | 0.0        |
| 0.3528        | 28.42 | 540  | 0.6777          | 0.3626   | 0.4305        | 0.8238           | nan                | 0.0             | 0.9439        | 0.8717         | 0.0114        | nan           | 0.7046        | 0.9429            | 0.0                  | 0.0           | nan            | 0.8307         | nan             | 0.0             | nan           | 0.0        | 0.7364   | 0.6872    | 0.0114   | nan      | 0.5563   | 0.9029       | 0.0             | 0.0      | nan       | 0.7320    | nan        | 0.0        |
| 0.5908        | 29.47 | 560  | 0.6502          | 0.3640   | 0.4319        | 0.8283           | nan                | 0.0             | 0.9324        | 0.8871         | 0.0017        | nan           | 0.7226        | 0.9465            | 0.0                  | 0.0           | nan            | 0.8289         | nan             | 0.0             | nan           | 0.0        | 0.7525   | 0.7027    | 0.0017   | nan      | 0.5584   | 0.8998       | 0.0             | 0.0      | nan       | 0.7252    | nan        | 0.0        |


### Framework versions

- Transformers 4.33.2
- Pytorch 2.0.1
- Datasets 2.15.0
- Tokenizers 0.13.3