kyujinpy's picture
Upload README.md
cc48d72
metadata
language:
  - ko
datasets:
  - kyujinpy/KOpen-platypus
library_name: transformers
pipeline_tag: text-generation
license: cc-by-nc-sa-4.0

(주)미디어그룹사람과숲과 (주)마커의 LLM 연구 컨소시엄에서 개발된 모델입니다
The license is cc-by-nc-sa-4.0.

Poly-platypus-ko

img
Polyglot-ko + KO-platypus2 = Poly-platypus-ko

Model Details

Model Developers Kyujin Han (kyujinpy)
Input Models input text only.
Output Models generate text only.
Model Architecture
Poly-platypus-ko is an auto-regressive language model based on the polyglot-ko transformer architecture.

Repo Link
Github KO-platypus2: KO-platypus2
Github Poly-platypus-ko: Poly-platypus-ko

Base Model
Polyglot-ko-12.8b

Fine-tuning method
Same as KO-Platypus2.

Training Dataset
I use KOpen-platypus dataset.
I use A100 GPU 40GB and COLAB, when trianing.

Model Bechmark1

KO-LLM leaderboard

img

Model Average Ko-ARC Ko-HellaSwag Ko-MMLU Ko-TruthfulQA Ko-CommonGen V2
Poly-platypus-ko-12.8b(ours) 44.95 35.15 50.39 25.58 38.74 74.88
KoT-platypus2-7B 45.62 38.05 49.63 34.68 37.69 68.08
KO-platypus2-7B-EX 45.41 39.08 50.86 34.60 37.94 64.55
42MARU/polyglot-ko-12.8b-instruct 43.89 36.35 51.59 26.38 45.16 59.98
FINDA-FIT/llama-p 43.63 39.59 50.74 33.85 38.09 55.87

Compare with Top 4 SOTA models. (update: 10/01)


Model Benchmark2

LM Eval Harness - Korean (polyglot branch)

Question Answering (QA)

COPA (F1)

Model 0-shot 5-shot 10-shot 50-shot
Polyglot-ko-5.8b 0.7745 0.7676 0.7775 0.7887
Polyglot-ko-12.8b 0.7937 0.8108 0.8037 0.8369
Llama-2-Ko-7b 20B 0.7388 0.7626 0.7808 0.7979
Llama-2-Ko-7b 40B 0.7436 0.7927 0.8037 0.8259
KO-platypus2-7B-EX 0.7509 0.7899 0.8029 0.8290
KoT-platypus2-7B 0.7517 0.7868 0.8009 0.8239
Poly-platypus-ko-12.8b(ours) 0.7876 0.8099 0.8008 0.8239

Natural Language Inference (NLI; 자연어 추론 평가)

HellaSwag (F1)

Model 0-shot 5-shot 10-shot 50-shot
Polyglot-ko-5.8b 0.5976 0.5998 0.5979 0.6208
Polyglot-ko-12.8b 0.5954 0.6306 0.6098 0.6118
Llama-2-Ko-7b 20B 0.4518 0.4668 0.4726 0.4828
Llama-2-Ko-7b 40B 0.4562 0.4657 0.4698 0.4774
KO-platypus2-7B-EX 0.4571 0.4461 0.4371 0.4525
KoT-platypus2-7B 0.4432 0.4382 0.4550 0.4534
Poly-platypus-ko-12.8b(ours) 0.4838 0.4858 0.5005 0.5062

Question Answering (QA)

BoolQ (F1)

Model 0-shot 5-shot 10-shot 50-shot
Polyglot-ko-5.8b 0.4356 0.5698 0.5187 0.5236
Polyglot-ko-12.8b 0.4818 0.6041 0.6289 0.6448
Llama-2-Ko-7b 20B 0.3607 0.6797 0.6801 0.6622
Llama-2-Ko-7b 40B 0.5786 0.6977 0.7084 0.7144
KO-platypus2-7B-EX 0.6028 0.6979 0.7016 0.6988
KoT-platypus2-7B 0.6142 0.6757 0.6839 0.6878
Poly-platypus-ko-12.8b(ours) 0.4888 0.6520 0.6568 0.6835

Classification

SentiNeg (F1)

Model 0-shot 5-shot 10-shot 50-shot
Polyglot-ko-5.8b 0.3394 0.8841 0.8808 0.9521
Polyglot-ko-12.8b 0.9117 0.9015 0.9345 0.9723
Llama-2-Ko-7b 20B 0.4855 0.8295 0.8711 0.8513
Llama-2-Ko-7b 40B 0.4594 0.7611 0.7276 0.9370
KO-platypus2-7B-EX 0.5821 0.7653 0.7991 0.8643
KoT-platypus2-7B 0.6127 0.7199 0.7531 0.8381
Poly-platypus-ko-12.8b(ours) 0.8490 0.9597 0.9723 0.9847

Implementation Code

### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

repo = "MarkrAI/kyujin-Poly-platypus-ko-12.8b"
CoT-llama = AutoModelForCausalLM.from_pretrained(
        repo,
        return_dict=True,
        torch_dtype=torch.float16,
        device_map='auto'
)
CoT-llama_tokenizer = AutoTokenizer.from_pretrained(repo)

Readme format: kyujinpy/KoT-platypus2-7B