(주)미디어그룹사람과숲과 (주)마커의 LLM 연구 컨소시엄에서 개발된 모델입니다
The license is cc-by-nc-sa-4.0
.
Poly-platypus-ko
Polyglot-ko + KO-platypus2 = Poly-platypus-ko
Model Details
Model Developers Kyujin Han (kyujinpy)
Input Models input text only.
Output Models generate text only.
Model Architecture
Poly-platypus-ko is an auto-regressive language model based on the polyglot-ko transformer architecture.
Repo Link
Github KO-platypus2: KO-platypus2
Github Poly-platypus-ko: Poly-platypus-ko
Base Model
Polyglot-ko-12.8b
Fine-tuning method
Same as KO-Platypus2.
Training Dataset
I use KOpen-platypus dataset.
I use A100 GPU 40GB and COLAB, when trianing.
Model Bechmark1
KO-LLM leaderboard
- Follow up as Open KO-LLM LeaderBoard.
Model | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
---|---|---|---|---|---|---|
Poly-platypus-ko-12.8b(ours) | 44.95 | 35.15 | 50.39 | 25.58 | 38.74 | 74.88 |
KoT-platypus2-7B | 45.62 | 38.05 | 49.63 | 34.68 | 37.69 | 68.08 |
KO-platypus2-7B-EX | 45.41 | 39.08 | 50.86 | 34.60 | 37.94 | 64.55 |
42MARU/polyglot-ko-12.8b-instruct | 43.89 | 36.35 | 51.59 | 26.38 | 45.16 | 59.98 |
FINDA-FIT/llama-p | 43.63 | 39.59 | 50.74 | 33.85 | 38.09 | 55.87 |
Compare with Top 4 SOTA models. (update: 10/01)
Model Benchmark2
LM Eval Harness - Korean (polyglot branch)
- Used EleutherAI's lm-evaluation-harness
Question Answering (QA)
COPA (F1)
Model | 0-shot | 5-shot | 10-shot | 50-shot |
---|---|---|---|---|
Polyglot-ko-5.8b | 0.7745 | 0.7676 | 0.7775 | 0.7887 |
Polyglot-ko-12.8b | 0.7937 | 0.8108 | 0.8037 | 0.8369 |
Llama-2-Ko-7b 20B | 0.7388 | 0.7626 | 0.7808 | 0.7979 |
Llama-2-Ko-7b 40B | 0.7436 | 0.7927 | 0.8037 | 0.8259 |
KO-platypus2-7B-EX | 0.7509 | 0.7899 | 0.8029 | 0.8290 |
KoT-platypus2-7B | 0.7517 | 0.7868 | 0.8009 | 0.8239 |
Poly-platypus-ko-12.8b(ours) | 0.7876 | 0.8099 | 0.8008 | 0.8239 |
Natural Language Inference (NLI; 자연어 추론 평가)
HellaSwag (F1)
Model | 0-shot | 5-shot | 10-shot | 50-shot |
---|---|---|---|---|
Polyglot-ko-5.8b | 0.5976 | 0.5998 | 0.5979 | 0.6208 |
Polyglot-ko-12.8b | 0.5954 | 0.6306 | 0.6098 | 0.6118 |
Llama-2-Ko-7b 20B | 0.4518 | 0.4668 | 0.4726 | 0.4828 |
Llama-2-Ko-7b 40B | 0.4562 | 0.4657 | 0.4698 | 0.4774 |
KO-platypus2-7B-EX | 0.4571 | 0.4461 | 0.4371 | 0.4525 |
KoT-platypus2-7B | 0.4432 | 0.4382 | 0.4550 | 0.4534 |
Poly-platypus-ko-12.8b(ours) | 0.4838 | 0.4858 | 0.5005 | 0.5062 |
Question Answering (QA)
BoolQ (F1)
Model | 0-shot | 5-shot | 10-shot | 50-shot |
---|---|---|---|---|
Polyglot-ko-5.8b | 0.4356 | 0.5698 | 0.5187 | 0.5236 |
Polyglot-ko-12.8b | 0.4818 | 0.6041 | 0.6289 | 0.6448 |
Llama-2-Ko-7b 20B | 0.3607 | 0.6797 | 0.6801 | 0.6622 |
Llama-2-Ko-7b 40B | 0.5786 | 0.6977 | 0.7084 | 0.7144 |
KO-platypus2-7B-EX | 0.6028 | 0.6979 | 0.7016 | 0.6988 |
KoT-platypus2-7B | 0.6142 | 0.6757 | 0.6839 | 0.6878 |
Poly-platypus-ko-12.8b(ours) | 0.4888 | 0.6520 | 0.6568 | 0.6835 |
Classification
SentiNeg (F1)
Model | 0-shot | 5-shot | 10-shot | 50-shot |
---|---|---|---|---|
Polyglot-ko-5.8b | 0.3394 | 0.8841 | 0.8808 | 0.9521 |
Polyglot-ko-12.8b | 0.9117 | 0.9015 | 0.9345 | 0.9723 |
Llama-2-Ko-7b 20B | 0.4855 | 0.8295 | 0.8711 | 0.8513 |
Llama-2-Ko-7b 40B | 0.4594 | 0.7611 | 0.7276 | 0.9370 |
KO-platypus2-7B-EX | 0.5821 | 0.7653 | 0.7991 | 0.8643 |
KoT-platypus2-7B | 0.6127 | 0.7199 | 0.7531 | 0.8381 |
Poly-platypus-ko-12.8b(ours) | 0.8490 | 0.9597 | 0.9723 | 0.9847 |
Implementation Code
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "MarkrAI/kyujin-Poly-platypus-ko-12.8b"
CoT-llama = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
CoT-llama_tokenizer = AutoTokenizer.from_pretrained(repo)
Readme format: kyujinpy/KoT-platypus2-7B
- Downloads last month
- 4,872
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.