MMoshtaghi's picture
Update README.md
54627c5 verified
---
base_model: unsloth/qwen2-vl-7b-instruct-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2_vl
- trl
- qlora
license: apache-2.0
language:
- en
datasets:
- unsloth/LaTeX_OCR
---
# Uploaded model
- **Developed by:** MMoshtaghi
- **License:** apache-2.0
- **Finetuned from model :** unsloth/qwen2-vl-7b-instruct-unsloth-bnb-4bit
- **Finetuned on dataset:** [unsloth/LaTeX_OCR](https://huggingface.co/datasets/unsloth/LaTeX_OCR)
- **PEFT method :** [Quantized LoRA](https://huggingface.co/papers/2305.14314)
## Quick start
```python
from datasets import load_dataset
from unsloth import FastVisionModel
model, tokenizer = FastVisionModel.from_pretrained(
model_name = "MMoshtaghi/Qwen2-VL-7B-Instruct-LoRAAdpt-MathOCR",
load_in_4bit = True,
)
FastVisionModel.for_inference(model) # Enable for inference!
dataset = load_dataset("unsloth/LaTeX_OCR", split = "train")
image = dataset[0]["image"]
instruction = "Write the LaTeX representation for this image."
messages = [
{"role": "user", "content": [
{"type": "image"},
{"type": "text", "text": instruction}
]}
]
input_text = tokenizer.apply_chat_template(messages, add_generation_prompt = True)
inputs = tokenizer(
image,
input_text,
add_special_tokens = False,
return_tensors = "pt",
).to("cuda")
from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer, skip_prompt = True)
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128,
use_cache = True, temperature = 1.5, min_p = 0.1)
```
### Framework versions
- TRL: 0.13.0
- Transformers: 4.47.1
- Pytorch: 2.5.1+cu121
- Datasets: 3.2.0
- Tokenizers: 0.21.0
- Unsloth: 2025.1.5
## Training procedure
(Log-in required!)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/open_ai/huggingface/runs/8juqyo5h)
## Citations
This VLM model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.