Uploaded model

  • Developed by: MMoshtaghi
  • License: apache-2.0
  • Finetuned from model : unsloth/qwen2-vl-7b-instruct-unsloth-bnb-4bit
  • Finetuned on dataset: unsloth/LaTeX_OCR
  • PEFT method : Quantized LoRA

Quick start

from datasets import load_dataset
from unsloth import FastVisionModel

model, tokenizer = FastVisionModel.from_pretrained(
    model_name = "MMoshtaghi/Qwen2-VL-7B-Instruct-LoRAAdpt-MathOCR",
    load_in_4bit = True,
)
FastVisionModel.for_inference(model) # Enable for inference!

dataset = load_dataset("unsloth/LaTeX_OCR", split = "train")
image = dataset[0]["image"]
instruction = "Write the LaTeX representation for this image."

messages = [
    {"role": "user", "content": [
        {"type": "image"},
        {"type": "text", "text": instruction}
    ]}
]
input_text = tokenizer.apply_chat_template(messages, add_generation_prompt = True)
inputs = tokenizer(
    image,
    input_text,
    add_special_tokens = False,
    return_tensors = "pt",
).to("cuda")

from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer, skip_prompt = True)
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128,
                   use_cache = True, temperature = 1.5, min_p = 0.1)

Framework versions

  • TRL: 0.13.0
  • Transformers: 4.47.1
  • Pytorch: 2.5.1+cu121
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0
  • Unsloth: 2025.1.5

Training procedure

(Log-in required!) Visualize in Weights & Biases

Citations

This VLM model was trained 2x faster with Unsloth and Huggingface's TRL library.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Dataset used to train MMoshtaghi/Qwen2-VL-7B-Instruct-LoRAAdpt-MathOCR