|
### Model Card for Model ID |
|
base_model : [google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it) |
|
|
|
### Basic usage |
|
```python |
|
# pip install accelerate |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("MDDDDR/gemma-7b-it-v0.1") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"MDDDDR/gemma-7b-it-v0.1", |
|
device_map="auto", |
|
torch_dtype=torch.bfloat16 |
|
) |
|
|
|
input_text = "사과가 뭐야?" |
|
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") |
|
|
|
outputs = model.generate(**input_ids) |
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
### Training dataset |
|
dataset : [sean0042/KorMedMCQA](https://huggingface.co/datasets/sean0042/KorMedMCQA) |
|
|
|
### lora_config and bnb_config in Training |
|
```python |
|
bnd_config = BitsAndBytesConfig( |
|
load_in_4bit = True, |
|
bnb_4bit_use_double_quant = True, |
|
bnb_4bit_quant_type = 'nf4', |
|
bnb_4bit_compute_dtype = torch.bfloat16 |
|
) |
|
|
|
lora_config = LoraConfig( |
|
r = 32, |
|
lora_alpha = 32, |
|
lora_dropout = 0.05, |
|
target_modules = ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj'] |
|
) |
|
``` |
|
|
|
### Hardware |
|
A100 40GB x 1 |