MDDDDR commited on
Commit
6686130
1 Parent(s): 0707118

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -0
README.md CHANGED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### Model Card for Model ID
2
+ base_model : [google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it)
3
+
4
+ ### Basic usage
5
+ ```python
6
+ # pip install accelerate
7
+ from transformers import AutoTokenizer, AutoModelForCausalLM
8
+ import torch
9
+
10
+ tokenizer = AutoTokenizer.from_pretrained("MDDDDR/gemma-7b-it-v0.1")
11
+ model = AutoModelForCausalLM.from_pretrained(
12
+ "MDDDDR/gemma-7b-it-v0.1",
13
+ device_map="auto",
14
+ torch_dtype=torch.bfloat16
15
+ )
16
+
17
+ input_text = "사과가 뭐야?"
18
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
19
+
20
+ outputs = model.generate(**input_ids)
21
+ print(tokenizer.decode(outputs[0]))
22
+ ```
23
+
24
+ ### Training dataset
25
+ dataset : [sean0042/KorMedMCQA](https://huggingface.co/datasets/sean0042/KorMedMCQA)
26
+
27
+ ### lora_config and bnb_config in Training
28
+ ```python
29
+ bnd_config = BitsAndBytesConfig(
30
+ load_in_4bit = True,
31
+ bnb_4bit_use_double_quant = True,
32
+ bnb_4bit_quant_type = 'nf4',
33
+ bnb_4bit_compute_dtype = torch.bfloat16
34
+ )
35
+
36
+ lora_config = LoraConfig(
37
+ r = 32,
38
+ lora_alpha = 32,
39
+ lora_dropout = 0.05,
40
+ target_modules = ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj']
41
+ )
42
+ ```
43
+
44
+ ### Hardware
45
+ A100 40GB x 1