adding modelling_mobillama.py
#7
by
omkarthawakar
- opened
- .gitattributes +0 -1
- MobileLLaMa.png +0 -3
- README.md +6 -33
- config.json +1 -1
- modeling_llama.py +898 -0
.gitattributes
CHANGED
@@ -33,4 +33,3 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
-
MobileLLaMa.png filter=lfs diff=lfs merge=lfs -text
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
MobileLLaMa.png
DELETED
Git LFS Details
|
README.md
CHANGED
@@ -11,25 +11,16 @@ pipeline_tag: text-generation
|
|
11 |
|
12 |
# MobiLlama-0.5B-Chat
|
13 |
|
14 |
-
<center><img src="MobileLLaMa.png" alt="mobillama logo" width="300"/></center>
|
15 |
-
|
16 |
We present MobiLlama-0.5B-Chat, an instruction following model finetuned on [MBZUAI/MobiLlama-05B](https://huggingface.co/MBZUAI/MobiLlama-05B).
|
17 |
|
18 |
-
## Model Summary
|
19 |
-
|
20 |
-
"Bigger the better" has been the predominant trend in recent Large Language Models (LLMs) development. However, LLMs do not suit well for scenarios that require on-device processing, energy efficiency, low memory footprint, and response efficiency. These requisites are crucial for privacy, security, and sustainable deployment. This paper explores the ‘less is more’ paradigm by addressing the challenge of designing accurate yet efficient Small Language Models (SLMs) for resource-constrained devices. Our primary contribution is the introduction of an accurate and fully transparent open-source 0.5 billion (0.5B) parameter SLM, named MobiLlama, catering to the specific needs of resource-constrained computing with an emphasis on enhanced performance with reduced resource demands. MobiLlama is a SLM design that initiates from a larger model and applies a careful parameter sharing scheme to reduce both the pre-training and the deployment cost. Our work strives to not only bridge the gap in open-source SLMs but also ensures full transparency, where complete training data pipeline, training code, model weights, and over 300 checkpoints along with evaluation codes are available on our [Github](https://github.com/mbzuai-oryx/MobiLlama).
|
21 |
-
|
22 |
-
[Arxiv Paper Link](https://arxiv.org/abs/2402.16840)
|
23 |
-
|
24 |
## Model Description
|
25 |
|
26 |
-
- **Model type:**
|
27 |
- **Language(s) (NLP):** English
|
28 |
- **License:** Apache 2.0
|
29 |
- **Resources for more information:**
|
30 |
-
- [
|
31 |
-
- [
|
32 |
-
- [Fully processed Amber pretraining data](https://huggingface.co/datasets/LLM360/AmberDatasets)
|
33 |
|
34 |
|
35 |
# Loading MobiLlama-0.5B-Chat
|
@@ -57,15 +48,6 @@ Alternatively, you may use [FastChat](https://github.com/lm-sys/FastChat):
|
|
57 |
python3 -m fastchat.serve.cli --model-path MBZUAI/MobiLlama-05B-Chat
|
58 |
```
|
59 |
|
60 |
-
# MobiLlama-0.5B-Chat Finetuning Details
|
61 |
-
|
62 |
-
## DataMix
|
63 |
-
| Subset | Number of rows | License |
|
64 |
-
| ----------- | ----------- | ----------- |
|
65 |
-
| WizardLM/WizardLM_evol_instruct_V2_196k | 143k | |
|
66 |
-
| icybee/share_gpt_90k_v1 | 90k | cc0-1.0 |
|
67 |
-
| Total | 233k | |
|
68 |
-
|
69 |
|
70 |
## Hyperparameters
|
71 |
| Hyperparameter | Value |
|
@@ -104,16 +86,7 @@ python3 -m fastchat.serve.cli --model-path MBZUAI/MobiLlama-05B-Chat
|
|
104 |
| Winogrande | 0.5659 | 0.5966 |
|
105 |
|
106 |
|
107 |
-
##
|
108 |
-
|
109 |
|
110 |
-
|
111 |
-
@misc{thawakar2024mobillama,
|
112 |
-
title={MobiLlama: Towards Accurate and Lightweight Fully Transparent GPT},
|
113 |
-
author={Omkar Thawakar and Ashmal Vayani and Salman Khan and Hisham Cholakkal and Rao Muhammad Anwer and Michael Felsberg and Timothy Baldwin and Eric P. Xing and Fahad Shahbaz Khan},
|
114 |
-
year={2024},
|
115 |
-
eprint={2402.16840},
|
116 |
-
archivePrefix={arXiv},
|
117 |
-
primaryClass={cs.CL}
|
118 |
-
}
|
119 |
-
```
|
|
|
11 |
|
12 |
# MobiLlama-0.5B-Chat
|
13 |
|
|
|
|
|
14 |
We present MobiLlama-0.5B-Chat, an instruction following model finetuned on [MBZUAI/MobiLlama-05B](https://huggingface.co/MBZUAI/MobiLlama-05B).
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
## Model Description
|
17 |
|
18 |
+
- **Model type:** Language model with the same architecture as LLaMA-7B
|
19 |
- **Language(s) (NLP):** English
|
20 |
- **License:** Apache 2.0
|
21 |
- **Resources for more information:**
|
22 |
+
- [Metrics](https://github.com/LLM360/Analysis360)
|
23 |
+
- [Finetuning Code](https://github.com/lm-sys/FastChat)
|
|
|
24 |
|
25 |
|
26 |
# Loading MobiLlama-0.5B-Chat
|
|
|
48 |
python3 -m fastchat.serve.cli --model-path MBZUAI/MobiLlama-05B-Chat
|
49 |
```
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
## Hyperparameters
|
53 |
| Hyperparameter | Value |
|
|
|
86 |
| Winogrande | 0.5659 | 0.5966 |
|
87 |
|
88 |
|
89 |
+
## Intended Uses
|
90 |
+
Given the nature of the training data, the MobiLlama-05B model is best suited for prompts using the QA format, the chat format, and the code format.
|
91 |
|
92 |
+
## Citation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
CHANGED
@@ -4,7 +4,7 @@
|
|
4 |
"MobiLlamaForCausalLM"
|
5 |
],
|
6 |
"auto_map": {
|
7 |
-
"AutoModelForCausalLM": "
|
8 |
},
|
9 |
"attention_bias": false,
|
10 |
"attention_dropout": 0.0,
|
|
|
4 |
"MobiLlamaForCausalLM"
|
5 |
],
|
6 |
"auto_map": {
|
7 |
+
"AutoModelForCausalLM": "modeling_mobillama.MobiLlamaForCausalLM"
|
8 |
},
|
9 |
"attention_bias": false,
|
10 |
"attention_dropout": 0.0,
|
modeling_llama.py
ADDED
@@ -0,0 +1,898 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" PyTorch LLaMA model."""
|
21 |
+
import math
|
22 |
+
from typing import List, Optional, Tuple, Union
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.utils.checkpoint
|
26 |
+
from torch import nn
|
27 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
28 |
+
|
29 |
+
from transformers.activations import ACT2FN
|
30 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
31 |
+
from transformers.modeling_utils import PreTrainedModel
|
32 |
+
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
33 |
+
# from transformers.models.llama.configuration_llama import LlamaConfig
|
34 |
+
from .configuration_llama import LlamaConfig
|
35 |
+
|
36 |
+
from flash_attn import flash_attn_func
|
37 |
+
|
38 |
+
|
39 |
+
logger = logging.get_logger(__name__)
|
40 |
+
|
41 |
+
_CONFIG_FOR_DOC = "LlamaConfig"
|
42 |
+
|
43 |
+
|
44 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
45 |
+
def _make_causal_mask(
|
46 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
47 |
+
):
|
48 |
+
"""
|
49 |
+
Make causal mask used for bi-directional self-attention.
|
50 |
+
"""
|
51 |
+
bsz, tgt_len = input_ids_shape
|
52 |
+
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
|
53 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
54 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
55 |
+
mask = mask.to(dtype)
|
56 |
+
|
57 |
+
if past_key_values_length > 0:
|
58 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
59 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
60 |
+
|
61 |
+
|
62 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
63 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
64 |
+
"""
|
65 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
66 |
+
"""
|
67 |
+
bsz, src_len = mask.size()
|
68 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
69 |
+
|
70 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
71 |
+
|
72 |
+
inverted_mask = 1.0 - expanded_mask
|
73 |
+
|
74 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
75 |
+
|
76 |
+
|
77 |
+
class LlamaRMSNorm(nn.Module):
|
78 |
+
def __init__(self, hidden_size, eps=1e-6):
|
79 |
+
"""
|
80 |
+
LlamaRMSNorm is equivalent to T5LayerNorm
|
81 |
+
"""
|
82 |
+
super().__init__()
|
83 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
84 |
+
self.variance_epsilon = eps
|
85 |
+
|
86 |
+
def forward(self, hidden_states):
|
87 |
+
input_dtype = hidden_states.dtype
|
88 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
89 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
90 |
+
|
91 |
+
return (self.weight * hidden_states).to(input_dtype)
|
92 |
+
|
93 |
+
|
94 |
+
class LlamaRotaryEmbedding(torch.nn.Module):
|
95 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
96 |
+
super().__init__()
|
97 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
98 |
+
self.register_buffer("inv_freq", inv_freq)
|
99 |
+
|
100 |
+
# Build here to make `torch.jit.trace` work.
|
101 |
+
self.max_seq_len_cached = max_position_embeddings
|
102 |
+
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
103 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
104 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
105 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
106 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
|
107 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
|
108 |
+
|
109 |
+
def forward(self, x, seq_len=None):
|
110 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
111 |
+
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
|
112 |
+
if seq_len > self.max_seq_len_cached:
|
113 |
+
self.max_seq_len_cached = seq_len
|
114 |
+
t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
|
115 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
116 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
117 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
118 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
|
119 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
|
120 |
+
return (
|
121 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
122 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
123 |
+
)
|
124 |
+
|
125 |
+
|
126 |
+
def rotate_half(x):
|
127 |
+
"""Rotates half the hidden dims of the input."""
|
128 |
+
x1 = x[..., : x.shape[-1] // 2]
|
129 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
130 |
+
return torch.cat((-x2, x1), dim=-1)
|
131 |
+
|
132 |
+
|
133 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
134 |
+
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
135 |
+
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
136 |
+
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
137 |
+
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
138 |
+
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
139 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
140 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
141 |
+
return q_embed, k_embed
|
142 |
+
|
143 |
+
|
144 |
+
class LlamaMLP(nn.Module):
|
145 |
+
def __init__(
|
146 |
+
self,
|
147 |
+
hidden_size: int,
|
148 |
+
intermediate_size: int,
|
149 |
+
hidden_act: str,
|
150 |
+
):
|
151 |
+
super().__init__()
|
152 |
+
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
153 |
+
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
|
154 |
+
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
155 |
+
self.act_fn = ACT2FN[hidden_act]
|
156 |
+
|
157 |
+
def forward(self, x):
|
158 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
159 |
+
|
160 |
+
|
161 |
+
class LlamaAttention(nn.Module):
|
162 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
163 |
+
|
164 |
+
def __init__(self, config: LlamaConfig):
|
165 |
+
super().__init__()
|
166 |
+
self.config = config
|
167 |
+
self.hidden_size = config.hidden_size
|
168 |
+
self.num_heads = config.num_attention_heads
|
169 |
+
self.head_dim = self.hidden_size // self.num_heads
|
170 |
+
self.max_position_embeddings = config.max_position_embeddings
|
171 |
+
|
172 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
173 |
+
raise ValueError(
|
174 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
175 |
+
f" and `num_heads`: {self.num_heads})."
|
176 |
+
)
|
177 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
178 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
179 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
180 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
181 |
+
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
|
182 |
+
|
183 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
184 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
185 |
+
|
186 |
+
def forward(
|
187 |
+
self,
|
188 |
+
hidden_states: torch.Tensor,
|
189 |
+
attention_mask: Optional[torch.Tensor] = None,
|
190 |
+
position_ids: Optional[torch.LongTensor] = None,
|
191 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
192 |
+
output_attentions: bool = False,
|
193 |
+
use_cache: bool = False,
|
194 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
195 |
+
bsz, q_len, _ = hidden_states.size()
|
196 |
+
|
197 |
+
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
198 |
+
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
199 |
+
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
200 |
+
|
201 |
+
kv_seq_len = key_states.shape[-2]
|
202 |
+
if past_key_value is not None:
|
203 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
204 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
205 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
206 |
+
# [bsz, nh, t, hd]
|
207 |
+
|
208 |
+
if past_key_value is not None:
|
209 |
+
# reuse k, v, self_attention
|
210 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
211 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
212 |
+
|
213 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
214 |
+
|
215 |
+
# attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
216 |
+
#
|
217 |
+
# if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
218 |
+
# raise ValueError(
|
219 |
+
# f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
220 |
+
# f" {attn_weights.size()}"
|
221 |
+
# )
|
222 |
+
#
|
223 |
+
# if attention_mask is not None:
|
224 |
+
# if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
225 |
+
# raise ValueError(
|
226 |
+
# f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
227 |
+
# )
|
228 |
+
# attn_weights = attn_weights + attention_mask
|
229 |
+
# attn_weights = torch.max(
|
230 |
+
# attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device)
|
231 |
+
# )
|
232 |
+
#
|
233 |
+
# # upcast attention to fp32
|
234 |
+
# attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
235 |
+
# attn_output = torch.matmul(attn_weights, value_states)
|
236 |
+
#
|
237 |
+
# if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
238 |
+
# raise ValueError(
|
239 |
+
# f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
240 |
+
# f" {attn_output.size()}"
|
241 |
+
# )
|
242 |
+
#
|
243 |
+
# attn_output = attn_output.transpose(1, 2)
|
244 |
+
|
245 |
+
attn_output = flash_attn_func(
|
246 |
+
q=query_states.transpose(1, 2).to(torch.bfloat16),
|
247 |
+
k=key_states.transpose(1, 2).to(torch.bfloat16),
|
248 |
+
v=value_states.transpose(1, 2).to(torch.bfloat16),
|
249 |
+
causal=True)
|
250 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
251 |
+
attn_output = attn_output.to(query_states.dtype)
|
252 |
+
|
253 |
+
attn_output = self.o_proj(attn_output)
|
254 |
+
|
255 |
+
# if not output_attentions:
|
256 |
+
# attn_weights = None
|
257 |
+
assert not output_attentions
|
258 |
+
attn_weights = None
|
259 |
+
|
260 |
+
return attn_output, attn_weights, past_key_value
|
261 |
+
|
262 |
+
|
263 |
+
class LlamaDecoderLayer(nn.Module):
|
264 |
+
def __init__(self, config: LlamaConfig, mlp):
|
265 |
+
super().__init__()
|
266 |
+
self.hidden_size = config.hidden_size
|
267 |
+
self.self_attn = LlamaAttention(config=config)
|
268 |
+
self.mlp = mlp #LlamaMLP(hidden_size=self.hidden_size,intermediate_size=config.intermediate_size,hidden_act=config.hidden_act,)
|
269 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
270 |
+
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
271 |
+
|
272 |
+
def forward(
|
273 |
+
self,
|
274 |
+
hidden_states: torch.Tensor,
|
275 |
+
attention_mask: Optional[torch.Tensor] = None,
|
276 |
+
position_ids: Optional[torch.LongTensor] = None,
|
277 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
278 |
+
output_attentions: Optional[bool] = False,
|
279 |
+
use_cache: Optional[bool] = False,
|
280 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
281 |
+
"""
|
282 |
+
Args:
|
283 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
284 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
285 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
286 |
+
output_attentions (`bool`, *optional*):
|
287 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
288 |
+
returned tensors for more detail.
|
289 |
+
use_cache (`bool`, *optional*):
|
290 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
291 |
+
(see `past_key_values`).
|
292 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
293 |
+
"""
|
294 |
+
|
295 |
+
residual = hidden_states
|
296 |
+
|
297 |
+
hidden_states = self.input_layernorm(hidden_states)
|
298 |
+
|
299 |
+
# Self Attention
|
300 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
301 |
+
hidden_states=hidden_states,
|
302 |
+
attention_mask=attention_mask,
|
303 |
+
position_ids=position_ids,
|
304 |
+
past_key_value=past_key_value,
|
305 |
+
output_attentions=output_attentions,
|
306 |
+
use_cache=use_cache,
|
307 |
+
)
|
308 |
+
hidden_states = residual + hidden_states
|
309 |
+
|
310 |
+
# Fully Connected
|
311 |
+
residual = hidden_states
|
312 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
313 |
+
hidden_states = self.mlp(hidden_states)
|
314 |
+
hidden_states = residual + hidden_states
|
315 |
+
|
316 |
+
outputs = (hidden_states,)
|
317 |
+
|
318 |
+
if output_attentions:
|
319 |
+
outputs += (self_attn_weights,)
|
320 |
+
|
321 |
+
if use_cache:
|
322 |
+
outputs += (present_key_value,)
|
323 |
+
|
324 |
+
return outputs
|
325 |
+
|
326 |
+
|
327 |
+
LLAMA_START_DOCSTRING = r"""
|
328 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
329 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
330 |
+
etc.)
|
331 |
+
|
332 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
333 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
334 |
+
and behavior.
|
335 |
+
|
336 |
+
Parameters:
|
337 |
+
config ([`LlamaConfig`]):
|
338 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
339 |
+
load the weights associated with the model, only the configuration. Check out the
|
340 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
341 |
+
"""
|
342 |
+
|
343 |
+
|
344 |
+
@add_start_docstrings(
|
345 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
346 |
+
LLAMA_START_DOCSTRING,
|
347 |
+
)
|
348 |
+
class LlamaPreTrainedModel(PreTrainedModel):
|
349 |
+
config_class = LlamaConfig
|
350 |
+
base_model_prefix = "model"
|
351 |
+
supports_gradient_checkpointing = True
|
352 |
+
_no_split_modules = ["LlamaDecoderLayer"]
|
353 |
+
_skip_keys_device_placement = "past_key_values"
|
354 |
+
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
|
355 |
+
|
356 |
+
def _init_weights(self, module):
|
357 |
+
std = self.config.initializer_range
|
358 |
+
if isinstance(module, nn.Linear):
|
359 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
360 |
+
if module.bias is not None:
|
361 |
+
module.bias.data.zero_()
|
362 |
+
elif isinstance(module, nn.Embedding):
|
363 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
364 |
+
if module.padding_idx is not None:
|
365 |
+
module.weight.data[module.padding_idx].zero_()
|
366 |
+
|
367 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
368 |
+
if isinstance(module, LlamaModel):
|
369 |
+
module.gradient_checkpointing = value
|
370 |
+
|
371 |
+
|
372 |
+
LLAMA_INPUTS_DOCSTRING = r"""
|
373 |
+
Args:
|
374 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
375 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
376 |
+
it.
|
377 |
+
|
378 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
379 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
380 |
+
|
381 |
+
[What are input IDs?](../glossary#input-ids)
|
382 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
383 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
384 |
+
|
385 |
+
- 1 for tokens that are **not masked**,
|
386 |
+
- 0 for tokens that are **masked**.
|
387 |
+
|
388 |
+
[What are attention masks?](../glossary#attention-mask)
|
389 |
+
|
390 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
391 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
392 |
+
|
393 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
394 |
+
`past_key_values`).
|
395 |
+
|
396 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
397 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
398 |
+
information on the default strategy.
|
399 |
+
|
400 |
+
- 1 indicates the head is **not masked**,
|
401 |
+
- 0 indicates the head is **masked**.
|
402 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
403 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
404 |
+
config.n_positions - 1]`.
|
405 |
+
|
406 |
+
[What are position IDs?](../glossary#position-ids)
|
407 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
408 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
409 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
410 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
411 |
+
|
412 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
413 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
414 |
+
|
415 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
416 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
417 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
418 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
419 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
420 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
421 |
+
model's internal embedding lookup matrix.
|
422 |
+
use_cache (`bool`, *optional*):
|
423 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
424 |
+
`past_key_values`).
|
425 |
+
output_attentions (`bool`, *optional*):
|
426 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
427 |
+
tensors for more detail.
|
428 |
+
output_hidden_states (`bool`, *optional*):
|
429 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
430 |
+
more detail.
|
431 |
+
return_dict (`bool`, *optional*):
|
432 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
433 |
+
"""
|
434 |
+
|
435 |
+
|
436 |
+
@add_start_docstrings(
|
437 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
438 |
+
LLAMA_START_DOCSTRING,
|
439 |
+
)
|
440 |
+
class LlamaModel(LlamaPreTrainedModel):
|
441 |
+
"""
|
442 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
443 |
+
|
444 |
+
Args:
|
445 |
+
config: LlamaConfig
|
446 |
+
"""
|
447 |
+
|
448 |
+
def __init__(self, config: LlamaConfig):
|
449 |
+
super().__init__(config)
|
450 |
+
self.padding_idx = config.pad_token_id
|
451 |
+
self.vocab_size = config.vocab_size
|
452 |
+
|
453 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
454 |
+
mlp = LlamaMLP(
|
455 |
+
hidden_size=config.hidden_size,
|
456 |
+
intermediate_size=config.intermediate_size,
|
457 |
+
hidden_act=config.hidden_act,
|
458 |
+
)
|
459 |
+
self.layers = nn.ModuleList([LlamaDecoderLayer(config, mlp) for _ in range(config.num_hidden_layers)])
|
460 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
461 |
+
|
462 |
+
self.gradient_checkpointing = False
|
463 |
+
# Initialize weights and apply final processing
|
464 |
+
self.post_init()
|
465 |
+
|
466 |
+
def get_input_embeddings(self):
|
467 |
+
return self.embed_tokens
|
468 |
+
|
469 |
+
def set_input_embeddings(self, value):
|
470 |
+
self.embed_tokens = value
|
471 |
+
|
472 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
473 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
474 |
+
# create causal mask
|
475 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
476 |
+
combined_attention_mask = None
|
477 |
+
if input_shape[-1] > 1:
|
478 |
+
combined_attention_mask = _make_causal_mask(
|
479 |
+
input_shape,
|
480 |
+
inputs_embeds.dtype,
|
481 |
+
device=inputs_embeds.device,
|
482 |
+
past_key_values_length=past_key_values_length,
|
483 |
+
)
|
484 |
+
|
485 |
+
if attention_mask is not None:
|
486 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
487 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
488 |
+
inputs_embeds.device
|
489 |
+
)
|
490 |
+
combined_attention_mask = (
|
491 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
492 |
+
)
|
493 |
+
|
494 |
+
return combined_attention_mask
|
495 |
+
|
496 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
497 |
+
def forward(
|
498 |
+
self,
|
499 |
+
input_ids: torch.LongTensor = None,
|
500 |
+
attention_mask: Optional[torch.Tensor] = None,
|
501 |
+
position_ids: Optional[torch.LongTensor] = None,
|
502 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
503 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
504 |
+
use_cache: Optional[bool] = None,
|
505 |
+
output_attentions: Optional[bool] = None,
|
506 |
+
output_hidden_states: Optional[bool] = None,
|
507 |
+
return_dict: Optional[bool] = None,
|
508 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
509 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
510 |
+
output_hidden_states = (
|
511 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
512 |
+
)
|
513 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
514 |
+
|
515 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
516 |
+
|
517 |
+
# retrieve input_ids and inputs_embeds
|
518 |
+
if input_ids is not None and inputs_embeds is not None:
|
519 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
520 |
+
elif input_ids is not None:
|
521 |
+
batch_size, seq_length = input_ids.shape
|
522 |
+
elif inputs_embeds is not None:
|
523 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
524 |
+
else:
|
525 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
526 |
+
|
527 |
+
seq_length_with_past = seq_length
|
528 |
+
past_key_values_length = 0
|
529 |
+
|
530 |
+
if past_key_values is not None:
|
531 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
532 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
533 |
+
|
534 |
+
if position_ids is None:
|
535 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
536 |
+
position_ids = torch.arange(
|
537 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
538 |
+
)
|
539 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
540 |
+
else:
|
541 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
542 |
+
|
543 |
+
if inputs_embeds is None:
|
544 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
545 |
+
# embed positions
|
546 |
+
if attention_mask is None:
|
547 |
+
attention_mask = torch.ones(
|
548 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
549 |
+
)
|
550 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
551 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
552 |
+
)
|
553 |
+
|
554 |
+
hidden_states = inputs_embeds
|
555 |
+
|
556 |
+
if self.gradient_checkpointing and self.training:
|
557 |
+
if use_cache:
|
558 |
+
logger.warning_once(
|
559 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
560 |
+
)
|
561 |
+
use_cache = False
|
562 |
+
|
563 |
+
# decoder layers
|
564 |
+
all_hidden_states = () if output_hidden_states else None
|
565 |
+
all_self_attns = () if output_attentions else None
|
566 |
+
next_decoder_cache = () if use_cache else None
|
567 |
+
|
568 |
+
for idx, decoder_layer in enumerate(self.layers):
|
569 |
+
if output_hidden_states:
|
570 |
+
all_hidden_states += (hidden_states,)
|
571 |
+
|
572 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
573 |
+
|
574 |
+
if self.gradient_checkpointing and self.training:
|
575 |
+
|
576 |
+
def create_custom_forward(module):
|
577 |
+
def custom_forward(*inputs):
|
578 |
+
# None for past_key_value
|
579 |
+
return module(*inputs, output_attentions, None)
|
580 |
+
|
581 |
+
return custom_forward
|
582 |
+
|
583 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
584 |
+
create_custom_forward(decoder_layer),
|
585 |
+
hidden_states,
|
586 |
+
attention_mask,
|
587 |
+
position_ids,
|
588 |
+
None,
|
589 |
+
)
|
590 |
+
else:
|
591 |
+
layer_outputs = decoder_layer(
|
592 |
+
hidden_states,
|
593 |
+
attention_mask=attention_mask,
|
594 |
+
position_ids=position_ids,
|
595 |
+
past_key_value=past_key_value,
|
596 |
+
output_attentions=output_attentions,
|
597 |
+
use_cache=use_cache,
|
598 |
+
)
|
599 |
+
|
600 |
+
hidden_states = layer_outputs[0]
|
601 |
+
|
602 |
+
if use_cache:
|
603 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
604 |
+
|
605 |
+
if output_attentions:
|
606 |
+
all_self_attns += (layer_outputs[1],)
|
607 |
+
|
608 |
+
hidden_states = self.norm(hidden_states)
|
609 |
+
|
610 |
+
# add hidden states from the last decoder layer
|
611 |
+
if output_hidden_states:
|
612 |
+
all_hidden_states += (hidden_states,)
|
613 |
+
|
614 |
+
next_cache = next_decoder_cache if use_cache else None
|
615 |
+
if not return_dict:
|
616 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
617 |
+
return BaseModelOutputWithPast(
|
618 |
+
last_hidden_state=hidden_states,
|
619 |
+
past_key_values=next_cache,
|
620 |
+
hidden_states=all_hidden_states,
|
621 |
+
attentions=all_self_attns,
|
622 |
+
)
|
623 |
+
|
624 |
+
|
625 |
+
class LlamaForCausalLM(LlamaPreTrainedModel):
|
626 |
+
def __init__(self, config):
|
627 |
+
super().__init__(config)
|
628 |
+
self.model = LlamaModel(config)
|
629 |
+
|
630 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
631 |
+
|
632 |
+
# Initialize weights and apply final processing
|
633 |
+
self.post_init()
|
634 |
+
|
635 |
+
def get_input_embeddings(self):
|
636 |
+
return self.model.embed_tokens
|
637 |
+
|
638 |
+
def set_input_embeddings(self, value):
|
639 |
+
self.model.embed_tokens = value
|
640 |
+
|
641 |
+
def get_output_embeddings(self):
|
642 |
+
return self.lm_head
|
643 |
+
|
644 |
+
def set_output_embeddings(self, new_embeddings):
|
645 |
+
self.lm_head = new_embeddings
|
646 |
+
|
647 |
+
def set_decoder(self, decoder):
|
648 |
+
self.model = decoder
|
649 |
+
|
650 |
+
def get_decoder(self):
|
651 |
+
return self.model
|
652 |
+
|
653 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
654 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
655 |
+
def forward(
|
656 |
+
self,
|
657 |
+
input_ids: torch.LongTensor = None,
|
658 |
+
attention_mask: Optional[torch.Tensor] = None,
|
659 |
+
position_ids: Optional[torch.LongTensor] = None,
|
660 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
661 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
662 |
+
labels: Optional[torch.LongTensor] = None,
|
663 |
+
use_cache: Optional[bool] = None,
|
664 |
+
output_attentions: Optional[bool] = None,
|
665 |
+
output_hidden_states: Optional[bool] = None,
|
666 |
+
return_dict: Optional[bool] = None,
|
667 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
668 |
+
r"""
|
669 |
+
Args:
|
670 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
671 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
672 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
673 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
674 |
+
|
675 |
+
Returns:
|
676 |
+
|
677 |
+
Example:
|
678 |
+
|
679 |
+
```python
|
680 |
+
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
681 |
+
|
682 |
+
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
683 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
684 |
+
|
685 |
+
>>> prompt = "Hey, are you consciours? Can you talk to me?"
|
686 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
687 |
+
|
688 |
+
>>> # Generate
|
689 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
690 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
691 |
+
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
|
692 |
+
```"""
|
693 |
+
|
694 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
695 |
+
output_hidden_states = (
|
696 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
697 |
+
)
|
698 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
699 |
+
|
700 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
701 |
+
outputs = self.model(
|
702 |
+
input_ids=input_ids,
|
703 |
+
attention_mask=attention_mask,
|
704 |
+
position_ids=position_ids,
|
705 |
+
past_key_values=past_key_values,
|
706 |
+
inputs_embeds=inputs_embeds,
|
707 |
+
use_cache=use_cache,
|
708 |
+
output_attentions=output_attentions,
|
709 |
+
output_hidden_states=output_hidden_states,
|
710 |
+
return_dict=return_dict,
|
711 |
+
)
|
712 |
+
|
713 |
+
hidden_states = outputs[0]
|
714 |
+
logits = self.lm_head(hidden_states)
|
715 |
+
|
716 |
+
loss = None
|
717 |
+
if labels is not None:
|
718 |
+
# Shift so that tokens < n predict n
|
719 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
720 |
+
shift_labels = labels[..., 1:].contiguous()
|
721 |
+
# Flatten the tokens
|
722 |
+
loss_fct = CrossEntropyLoss()
|
723 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
724 |
+
shift_labels = shift_labels.view(-1)
|
725 |
+
# Enable model parallelism
|
726 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
727 |
+
loss = loss_fct(shift_logits, shift_labels)
|
728 |
+
|
729 |
+
if not return_dict:
|
730 |
+
output = (logits,) + outputs[1:]
|
731 |
+
return (loss,) + output if loss is not None else output
|
732 |
+
|
733 |
+
return CausalLMOutputWithPast(
|
734 |
+
loss=loss,
|
735 |
+
logits=logits,
|
736 |
+
past_key_values=outputs.past_key_values,
|
737 |
+
hidden_states=outputs.hidden_states,
|
738 |
+
attentions=outputs.attentions,
|
739 |
+
)
|
740 |
+
|
741 |
+
def prepare_inputs_for_generation(
|
742 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
743 |
+
):
|
744 |
+
if past_key_values:
|
745 |
+
input_ids = input_ids[:, -1:]
|
746 |
+
|
747 |
+
position_ids = kwargs.get("position_ids", None)
|
748 |
+
if attention_mask is not None and position_ids is None:
|
749 |
+
# create position_ids on the fly for batch generation
|
750 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
751 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
752 |
+
if past_key_values:
|
753 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
754 |
+
|
755 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
756 |
+
if inputs_embeds is not None and past_key_values is None:
|
757 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
758 |
+
else:
|
759 |
+
model_inputs = {"input_ids": input_ids}
|
760 |
+
|
761 |
+
model_inputs.update(
|
762 |
+
{
|
763 |
+
"position_ids": position_ids,
|
764 |
+
"past_key_values": past_key_values,
|
765 |
+
"use_cache": kwargs.get("use_cache"),
|
766 |
+
"attention_mask": attention_mask,
|
767 |
+
}
|
768 |
+
)
|
769 |
+
return model_inputs
|
770 |
+
|
771 |
+
@staticmethod
|
772 |
+
def _reorder_cache(past_key_values, beam_idx):
|
773 |
+
reordered_past = ()
|
774 |
+
for layer_past in past_key_values:
|
775 |
+
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
776 |
+
return reordered_past
|
777 |
+
|
778 |
+
|
779 |
+
@add_start_docstrings(
|
780 |
+
"""
|
781 |
+
The LLaMa Model transformer with a sequence classification head on top (linear layer).
|
782 |
+
|
783 |
+
[`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
784 |
+
(e.g. GPT-2) do.
|
785 |
+
|
786 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
787 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
788 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
789 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
790 |
+
each row of the batch).
|
791 |
+
""",
|
792 |
+
LLAMA_START_DOCSTRING,
|
793 |
+
)
|
794 |
+
class LlamaForSequenceClassification(LlamaPreTrainedModel):
|
795 |
+
_keys_to_ignore_on_load_missing = [r"lm_head.weight"]
|
796 |
+
|
797 |
+
def __init__(self, config):
|
798 |
+
super().__init__(config)
|
799 |
+
self.num_labels = config.num_labels
|
800 |
+
self.model = LlamaModel(config)
|
801 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
802 |
+
|
803 |
+
# Initialize weights and apply final processing
|
804 |
+
self.post_init()
|
805 |
+
|
806 |
+
def get_input_embeddings(self):
|
807 |
+
return self.model.embed_tokens
|
808 |
+
|
809 |
+
def set_input_embeddings(self, value):
|
810 |
+
self.model.embed_tokens = value
|
811 |
+
|
812 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
813 |
+
def forward(
|
814 |
+
self,
|
815 |
+
input_ids: torch.LongTensor = None,
|
816 |
+
attention_mask: Optional[torch.Tensor] = None,
|
817 |
+
position_ids: Optional[torch.LongTensor] = None,
|
818 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
819 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
820 |
+
labels: Optional[torch.LongTensor] = None,
|
821 |
+
use_cache: Optional[bool] = None,
|
822 |
+
output_attentions: Optional[bool] = None,
|
823 |
+
output_hidden_states: Optional[bool] = None,
|
824 |
+
return_dict: Optional[bool] = None,
|
825 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
826 |
+
r"""
|
827 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
828 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
829 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
830 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
831 |
+
"""
|
832 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
833 |
+
|
834 |
+
transformer_outputs = self.model(
|
835 |
+
input_ids,
|
836 |
+
attention_mask=attention_mask,
|
837 |
+
position_ids=position_ids,
|
838 |
+
past_key_values=past_key_values,
|
839 |
+
inputs_embeds=inputs_embeds,
|
840 |
+
use_cache=use_cache,
|
841 |
+
output_attentions=output_attentions,
|
842 |
+
output_hidden_states=output_hidden_states,
|
843 |
+
return_dict=return_dict,
|
844 |
+
)
|
845 |
+
hidden_states = transformer_outputs[0]
|
846 |
+
logits = self.score(hidden_states)
|
847 |
+
|
848 |
+
if input_ids is not None:
|
849 |
+
batch_size = input_ids.shape[0]
|
850 |
+
else:
|
851 |
+
batch_size = inputs_embeds.shape[0]
|
852 |
+
|
853 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
854 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
855 |
+
if self.config.pad_token_id is None:
|
856 |
+
sequence_lengths = -1
|
857 |
+
else:
|
858 |
+
if input_ids is not None:
|
859 |
+
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
|
860 |
+
else:
|
861 |
+
sequence_lengths = -1
|
862 |
+
|
863 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
864 |
+
|
865 |
+
loss = None
|
866 |
+
if labels is not None:
|
867 |
+
labels = labels.to(logits.device)
|
868 |
+
if self.config.problem_type is None:
|
869 |
+
if self.num_labels == 1:
|
870 |
+
self.config.problem_type = "regression"
|
871 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
872 |
+
self.config.problem_type = "single_label_classification"
|
873 |
+
else:
|
874 |
+
self.config.problem_type = "multi_label_classification"
|
875 |
+
|
876 |
+
if self.config.problem_type == "regression":
|
877 |
+
loss_fct = MSELoss()
|
878 |
+
if self.num_labels == 1:
|
879 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
880 |
+
else:
|
881 |
+
loss = loss_fct(pooled_logits, labels)
|
882 |
+
elif self.config.problem_type == "single_label_classification":
|
883 |
+
loss_fct = CrossEntropyLoss()
|
884 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
885 |
+
elif self.config.problem_type == "multi_label_classification":
|
886 |
+
loss_fct = BCEWithLogitsLoss()
|
887 |
+
loss = loss_fct(pooled_logits, labels)
|
888 |
+
if not return_dict:
|
889 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
890 |
+
return ((loss,) + output) if loss is not None else output
|
891 |
+
|
892 |
+
return SequenceClassifierOutputWithPast(
|
893 |
+
loss=loss,
|
894 |
+
logits=pooled_logits,
|
895 |
+
past_key_values=transformer_outputs.past_key_values,
|
896 |
+
hidden_states=transformer_outputs.hidden_states,
|
897 |
+
attentions=transformer_outputs.attentions,
|
898 |
+
)
|