Text Generation
Transformers
PyTorch
English
llama
custom_code
text-generation-inference
Inference Endpoints

adding modelling_mobillama.py

#7
Files changed (5) hide show
  1. .gitattributes +0 -1
  2. MobileLLaMa.png +0 -3
  3. README.md +6 -33
  4. config.json +1 -1
  5. modeling_llama.py +898 -0
.gitattributes CHANGED
@@ -33,4 +33,3 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
- MobileLLaMa.png filter=lfs diff=lfs merge=lfs -text
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
MobileLLaMa.png DELETED

Git LFS Details

  • SHA256: d91ff5f50396c51a53ece5f8b687c90b100271393ba95ee83c46b3c4f1544fb1
  • Pointer size: 132 Bytes
  • Size of remote file: 1.3 MB
README.md CHANGED
@@ -11,25 +11,16 @@ pipeline_tag: text-generation
11
 
12
  # MobiLlama-0.5B-Chat
13
 
14
- <center><img src="MobileLLaMa.png" alt="mobillama logo" width="300"/></center>
15
-
16
  We present MobiLlama-0.5B-Chat, an instruction following model finetuned on [MBZUAI/MobiLlama-05B](https://huggingface.co/MBZUAI/MobiLlama-05B).
17
 
18
- ## Model Summary
19
-
20
- "Bigger the better" has been the predominant trend in recent Large Language Models (LLMs) development. However, LLMs do not suit well for scenarios that require on-device processing, energy efficiency, low memory footprint, and response efficiency. These requisites are crucial for privacy, security, and sustainable deployment. This paper explores the ‘less is more’ paradigm by addressing the challenge of designing accurate yet efficient Small Language Models (SLMs) for resource-constrained devices. Our primary contribution is the introduction of an accurate and fully transparent open-source 0.5 billion (0.5B) parameter SLM, named MobiLlama, catering to the specific needs of resource-constrained computing with an emphasis on enhanced performance with reduced resource demands. MobiLlama is a SLM design that initiates from a larger model and applies a careful parameter sharing scheme to reduce both the pre-training and the deployment cost. Our work strives to not only bridge the gap in open-source SLMs but also ensures full transparency, where complete training data pipeline, training code, model weights, and over 300 checkpoints along with evaluation codes are available on our [Github](https://github.com/mbzuai-oryx/MobiLlama).
21
-
22
- [Arxiv Paper Link](https://arxiv.org/abs/2402.16840)
23
-
24
  ## Model Description
25
 
26
- - **Model type:** Small Language Model (SLM) built using the architecture design of LLaMA-7B
27
  - **Language(s) (NLP):** English
28
  - **License:** Apache 2.0
29
  - **Resources for more information:**
30
- - [Training Code](https://github.com/mbzuai-oryx/MobiLlama)
31
- - [Data Preparation](https://github.com/LLM360/amber-data-prep)
32
- - [Fully processed Amber pretraining data](https://huggingface.co/datasets/LLM360/AmberDatasets)
33
 
34
 
35
  # Loading MobiLlama-0.5B-Chat
@@ -57,15 +48,6 @@ Alternatively, you may use [FastChat](https://github.com/lm-sys/FastChat):
57
  python3 -m fastchat.serve.cli --model-path MBZUAI/MobiLlama-05B-Chat
58
  ```
59
 
60
- # MobiLlama-0.5B-Chat Finetuning Details
61
-
62
- ## DataMix
63
- | Subset | Number of rows | License |
64
- | ----------- | ----------- | ----------- |
65
- | WizardLM/WizardLM_evol_instruct_V2_196k | 143k | |
66
- | icybee/share_gpt_90k_v1 | 90k | cc0-1.0 |
67
- | Total | 233k | |
68
-
69
 
70
  ## Hyperparameters
71
  | Hyperparameter | Value |
@@ -104,16 +86,7 @@ python3 -m fastchat.serve.cli --model-path MBZUAI/MobiLlama-05B-Chat
104
  | Winogrande | 0.5659 | 0.5966 |
105
 
106
 
107
- ## Citation
108
- **BibTeX:**
109
 
110
- ```bibtex
111
- @misc{thawakar2024mobillama,
112
- title={MobiLlama: Towards Accurate and Lightweight Fully Transparent GPT},
113
- author={Omkar Thawakar and Ashmal Vayani and Salman Khan and Hisham Cholakkal and Rao Muhammad Anwer and Michael Felsberg and Timothy Baldwin and Eric P. Xing and Fahad Shahbaz Khan},
114
- year={2024},
115
- eprint={2402.16840},
116
- archivePrefix={arXiv},
117
- primaryClass={cs.CL}
118
- }
119
- ```
 
11
 
12
  # MobiLlama-0.5B-Chat
13
 
 
 
14
  We present MobiLlama-0.5B-Chat, an instruction following model finetuned on [MBZUAI/MobiLlama-05B](https://huggingface.co/MBZUAI/MobiLlama-05B).
15
 
 
 
 
 
 
 
16
  ## Model Description
17
 
18
+ - **Model type:** Language model with the same architecture as LLaMA-7B
19
  - **Language(s) (NLP):** English
20
  - **License:** Apache 2.0
21
  - **Resources for more information:**
22
+ - [Metrics](https://github.com/LLM360/Analysis360)
23
+ - [Finetuning Code](https://github.com/lm-sys/FastChat)
 
24
 
25
 
26
  # Loading MobiLlama-0.5B-Chat
 
48
  python3 -m fastchat.serve.cli --model-path MBZUAI/MobiLlama-05B-Chat
49
  ```
50
 
 
 
 
 
 
 
 
 
 
51
 
52
  ## Hyperparameters
53
  | Hyperparameter | Value |
 
86
  | Winogrande | 0.5659 | 0.5966 |
87
 
88
 
89
+ ## Intended Uses
90
+ Given the nature of the training data, the MobiLlama-05B model is best suited for prompts using the QA format, the chat format, and the code format.
91
 
92
+ ## Citation
 
 
 
 
 
 
 
 
 
config.json CHANGED
@@ -4,7 +4,7 @@
4
  "MobiLlamaForCausalLM"
5
  ],
6
  "auto_map": {
7
- "AutoModelForCausalLM": "modelling_mobillama.MobiLlamaForCausalLM"
8
  },
9
  "attention_bias": false,
10
  "attention_dropout": 0.0,
 
4
  "MobiLlamaForCausalLM"
5
  ],
6
  "auto_map": {
7
+ "AutoModelForCausalLM": "modeling_mobillama.MobiLlamaForCausalLM"
8
  },
9
  "attention_bias": false,
10
  "attention_dropout": 0.0,
modeling_llama.py ADDED
@@ -0,0 +1,898 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch LLaMA model."""
21
+ import math
22
+ from typing import List, Optional, Tuple, Union
23
+
24
+ import torch
25
+ import torch.utils.checkpoint
26
+ from torch import nn
27
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
28
+
29
+ from transformers.activations import ACT2FN
30
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
31
+ from transformers.modeling_utils import PreTrainedModel
32
+ from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
33
+ # from transformers.models.llama.configuration_llama import LlamaConfig
34
+ from .configuration_llama import LlamaConfig
35
+
36
+ from flash_attn import flash_attn_func
37
+
38
+
39
+ logger = logging.get_logger(__name__)
40
+
41
+ _CONFIG_FOR_DOC = "LlamaConfig"
42
+
43
+
44
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
45
+ def _make_causal_mask(
46
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
47
+ ):
48
+ """
49
+ Make causal mask used for bi-directional self-attention.
50
+ """
51
+ bsz, tgt_len = input_ids_shape
52
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
53
+ mask_cond = torch.arange(mask.size(-1), device=device)
54
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
55
+ mask = mask.to(dtype)
56
+
57
+ if past_key_values_length > 0:
58
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
59
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
60
+
61
+
62
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
63
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
64
+ """
65
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
66
+ """
67
+ bsz, src_len = mask.size()
68
+ tgt_len = tgt_len if tgt_len is not None else src_len
69
+
70
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
71
+
72
+ inverted_mask = 1.0 - expanded_mask
73
+
74
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
75
+
76
+
77
+ class LlamaRMSNorm(nn.Module):
78
+ def __init__(self, hidden_size, eps=1e-6):
79
+ """
80
+ LlamaRMSNorm is equivalent to T5LayerNorm
81
+ """
82
+ super().__init__()
83
+ self.weight = nn.Parameter(torch.ones(hidden_size))
84
+ self.variance_epsilon = eps
85
+
86
+ def forward(self, hidden_states):
87
+ input_dtype = hidden_states.dtype
88
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
89
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
90
+
91
+ return (self.weight * hidden_states).to(input_dtype)
92
+
93
+
94
+ class LlamaRotaryEmbedding(torch.nn.Module):
95
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
96
+ super().__init__()
97
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
98
+ self.register_buffer("inv_freq", inv_freq)
99
+
100
+ # Build here to make `torch.jit.trace` work.
101
+ self.max_seq_len_cached = max_position_embeddings
102
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
103
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
104
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
105
+ emb = torch.cat((freqs, freqs), dim=-1)
106
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
107
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
108
+
109
+ def forward(self, x, seq_len=None):
110
+ # x: [bs, num_attention_heads, seq_len, head_size]
111
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
112
+ if seq_len > self.max_seq_len_cached:
113
+ self.max_seq_len_cached = seq_len
114
+ t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
115
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
116
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
117
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
118
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
119
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
120
+ return (
121
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
122
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
123
+ )
124
+
125
+
126
+ def rotate_half(x):
127
+ """Rotates half the hidden dims of the input."""
128
+ x1 = x[..., : x.shape[-1] // 2]
129
+ x2 = x[..., x.shape[-1] // 2 :]
130
+ return torch.cat((-x2, x1), dim=-1)
131
+
132
+
133
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
134
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
135
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
136
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
137
+ cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
138
+ sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
139
+ q_embed = (q * cos) + (rotate_half(q) * sin)
140
+ k_embed = (k * cos) + (rotate_half(k) * sin)
141
+ return q_embed, k_embed
142
+
143
+
144
+ class LlamaMLP(nn.Module):
145
+ def __init__(
146
+ self,
147
+ hidden_size: int,
148
+ intermediate_size: int,
149
+ hidden_act: str,
150
+ ):
151
+ super().__init__()
152
+ self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
153
+ self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
154
+ self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
155
+ self.act_fn = ACT2FN[hidden_act]
156
+
157
+ def forward(self, x):
158
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
159
+
160
+
161
+ class LlamaAttention(nn.Module):
162
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
163
+
164
+ def __init__(self, config: LlamaConfig):
165
+ super().__init__()
166
+ self.config = config
167
+ self.hidden_size = config.hidden_size
168
+ self.num_heads = config.num_attention_heads
169
+ self.head_dim = self.hidden_size // self.num_heads
170
+ self.max_position_embeddings = config.max_position_embeddings
171
+
172
+ if (self.head_dim * self.num_heads) != self.hidden_size:
173
+ raise ValueError(
174
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
175
+ f" and `num_heads`: {self.num_heads})."
176
+ )
177
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
178
+ self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
179
+ self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
180
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
181
+ self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
182
+
183
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
184
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
185
+
186
+ def forward(
187
+ self,
188
+ hidden_states: torch.Tensor,
189
+ attention_mask: Optional[torch.Tensor] = None,
190
+ position_ids: Optional[torch.LongTensor] = None,
191
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
192
+ output_attentions: bool = False,
193
+ use_cache: bool = False,
194
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
195
+ bsz, q_len, _ = hidden_states.size()
196
+
197
+ query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
198
+ key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
199
+ value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
200
+
201
+ kv_seq_len = key_states.shape[-2]
202
+ if past_key_value is not None:
203
+ kv_seq_len += past_key_value[0].shape[-2]
204
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
205
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
206
+ # [bsz, nh, t, hd]
207
+
208
+ if past_key_value is not None:
209
+ # reuse k, v, self_attention
210
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
211
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
212
+
213
+ past_key_value = (key_states, value_states) if use_cache else None
214
+
215
+ # attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
216
+ #
217
+ # if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
218
+ # raise ValueError(
219
+ # f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
220
+ # f" {attn_weights.size()}"
221
+ # )
222
+ #
223
+ # if attention_mask is not None:
224
+ # if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
225
+ # raise ValueError(
226
+ # f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
227
+ # )
228
+ # attn_weights = attn_weights + attention_mask
229
+ # attn_weights = torch.max(
230
+ # attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device)
231
+ # )
232
+ #
233
+ # # upcast attention to fp32
234
+ # attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
235
+ # attn_output = torch.matmul(attn_weights, value_states)
236
+ #
237
+ # if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
238
+ # raise ValueError(
239
+ # f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
240
+ # f" {attn_output.size()}"
241
+ # )
242
+ #
243
+ # attn_output = attn_output.transpose(1, 2)
244
+
245
+ attn_output = flash_attn_func(
246
+ q=query_states.transpose(1, 2).to(torch.bfloat16),
247
+ k=key_states.transpose(1, 2).to(torch.bfloat16),
248
+ v=value_states.transpose(1, 2).to(torch.bfloat16),
249
+ causal=True)
250
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
251
+ attn_output = attn_output.to(query_states.dtype)
252
+
253
+ attn_output = self.o_proj(attn_output)
254
+
255
+ # if not output_attentions:
256
+ # attn_weights = None
257
+ assert not output_attentions
258
+ attn_weights = None
259
+
260
+ return attn_output, attn_weights, past_key_value
261
+
262
+
263
+ class LlamaDecoderLayer(nn.Module):
264
+ def __init__(self, config: LlamaConfig, mlp):
265
+ super().__init__()
266
+ self.hidden_size = config.hidden_size
267
+ self.self_attn = LlamaAttention(config=config)
268
+ self.mlp = mlp #LlamaMLP(hidden_size=self.hidden_size,intermediate_size=config.intermediate_size,hidden_act=config.hidden_act,)
269
+ self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
270
+ self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
271
+
272
+ def forward(
273
+ self,
274
+ hidden_states: torch.Tensor,
275
+ attention_mask: Optional[torch.Tensor] = None,
276
+ position_ids: Optional[torch.LongTensor] = None,
277
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
278
+ output_attentions: Optional[bool] = False,
279
+ use_cache: Optional[bool] = False,
280
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
281
+ """
282
+ Args:
283
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
284
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
285
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
286
+ output_attentions (`bool`, *optional*):
287
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
288
+ returned tensors for more detail.
289
+ use_cache (`bool`, *optional*):
290
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
291
+ (see `past_key_values`).
292
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
293
+ """
294
+
295
+ residual = hidden_states
296
+
297
+ hidden_states = self.input_layernorm(hidden_states)
298
+
299
+ # Self Attention
300
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
301
+ hidden_states=hidden_states,
302
+ attention_mask=attention_mask,
303
+ position_ids=position_ids,
304
+ past_key_value=past_key_value,
305
+ output_attentions=output_attentions,
306
+ use_cache=use_cache,
307
+ )
308
+ hidden_states = residual + hidden_states
309
+
310
+ # Fully Connected
311
+ residual = hidden_states
312
+ hidden_states = self.post_attention_layernorm(hidden_states)
313
+ hidden_states = self.mlp(hidden_states)
314
+ hidden_states = residual + hidden_states
315
+
316
+ outputs = (hidden_states,)
317
+
318
+ if output_attentions:
319
+ outputs += (self_attn_weights,)
320
+
321
+ if use_cache:
322
+ outputs += (present_key_value,)
323
+
324
+ return outputs
325
+
326
+
327
+ LLAMA_START_DOCSTRING = r"""
328
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
329
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
330
+ etc.)
331
+
332
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
333
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
334
+ and behavior.
335
+
336
+ Parameters:
337
+ config ([`LlamaConfig`]):
338
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
339
+ load the weights associated with the model, only the configuration. Check out the
340
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
341
+ """
342
+
343
+
344
+ @add_start_docstrings(
345
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
346
+ LLAMA_START_DOCSTRING,
347
+ )
348
+ class LlamaPreTrainedModel(PreTrainedModel):
349
+ config_class = LlamaConfig
350
+ base_model_prefix = "model"
351
+ supports_gradient_checkpointing = True
352
+ _no_split_modules = ["LlamaDecoderLayer"]
353
+ _skip_keys_device_placement = "past_key_values"
354
+ _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
355
+
356
+ def _init_weights(self, module):
357
+ std = self.config.initializer_range
358
+ if isinstance(module, nn.Linear):
359
+ module.weight.data.normal_(mean=0.0, std=std)
360
+ if module.bias is not None:
361
+ module.bias.data.zero_()
362
+ elif isinstance(module, nn.Embedding):
363
+ module.weight.data.normal_(mean=0.0, std=std)
364
+ if module.padding_idx is not None:
365
+ module.weight.data[module.padding_idx].zero_()
366
+
367
+ def _set_gradient_checkpointing(self, module, value=False):
368
+ if isinstance(module, LlamaModel):
369
+ module.gradient_checkpointing = value
370
+
371
+
372
+ LLAMA_INPUTS_DOCSTRING = r"""
373
+ Args:
374
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
375
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
376
+ it.
377
+
378
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
379
+ [`PreTrainedTokenizer.__call__`] for details.
380
+
381
+ [What are input IDs?](../glossary#input-ids)
382
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
383
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
384
+
385
+ - 1 for tokens that are **not masked**,
386
+ - 0 for tokens that are **masked**.
387
+
388
+ [What are attention masks?](../glossary#attention-mask)
389
+
390
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
391
+ [`PreTrainedTokenizer.__call__`] for details.
392
+
393
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
394
+ `past_key_values`).
395
+
396
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
397
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
398
+ information on the default strategy.
399
+
400
+ - 1 indicates the head is **not masked**,
401
+ - 0 indicates the head is **masked**.
402
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
403
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
404
+ config.n_positions - 1]`.
405
+
406
+ [What are position IDs?](../glossary#position-ids)
407
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
408
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
409
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
410
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
411
+
412
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
413
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
414
+
415
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
416
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
417
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
418
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
419
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
420
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
421
+ model's internal embedding lookup matrix.
422
+ use_cache (`bool`, *optional*):
423
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
424
+ `past_key_values`).
425
+ output_attentions (`bool`, *optional*):
426
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
427
+ tensors for more detail.
428
+ output_hidden_states (`bool`, *optional*):
429
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
430
+ more detail.
431
+ return_dict (`bool`, *optional*):
432
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
433
+ """
434
+
435
+
436
+ @add_start_docstrings(
437
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
438
+ LLAMA_START_DOCSTRING,
439
+ )
440
+ class LlamaModel(LlamaPreTrainedModel):
441
+ """
442
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
443
+
444
+ Args:
445
+ config: LlamaConfig
446
+ """
447
+
448
+ def __init__(self, config: LlamaConfig):
449
+ super().__init__(config)
450
+ self.padding_idx = config.pad_token_id
451
+ self.vocab_size = config.vocab_size
452
+
453
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
454
+ mlp = LlamaMLP(
455
+ hidden_size=config.hidden_size,
456
+ intermediate_size=config.intermediate_size,
457
+ hidden_act=config.hidden_act,
458
+ )
459
+ self.layers = nn.ModuleList([LlamaDecoderLayer(config, mlp) for _ in range(config.num_hidden_layers)])
460
+ self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
461
+
462
+ self.gradient_checkpointing = False
463
+ # Initialize weights and apply final processing
464
+ self.post_init()
465
+
466
+ def get_input_embeddings(self):
467
+ return self.embed_tokens
468
+
469
+ def set_input_embeddings(self, value):
470
+ self.embed_tokens = value
471
+
472
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
473
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
474
+ # create causal mask
475
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
476
+ combined_attention_mask = None
477
+ if input_shape[-1] > 1:
478
+ combined_attention_mask = _make_causal_mask(
479
+ input_shape,
480
+ inputs_embeds.dtype,
481
+ device=inputs_embeds.device,
482
+ past_key_values_length=past_key_values_length,
483
+ )
484
+
485
+ if attention_mask is not None:
486
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
487
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
488
+ inputs_embeds.device
489
+ )
490
+ combined_attention_mask = (
491
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
492
+ )
493
+
494
+ return combined_attention_mask
495
+
496
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
497
+ def forward(
498
+ self,
499
+ input_ids: torch.LongTensor = None,
500
+ attention_mask: Optional[torch.Tensor] = None,
501
+ position_ids: Optional[torch.LongTensor] = None,
502
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
503
+ inputs_embeds: Optional[torch.FloatTensor] = None,
504
+ use_cache: Optional[bool] = None,
505
+ output_attentions: Optional[bool] = None,
506
+ output_hidden_states: Optional[bool] = None,
507
+ return_dict: Optional[bool] = None,
508
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
509
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
510
+ output_hidden_states = (
511
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
512
+ )
513
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
514
+
515
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
516
+
517
+ # retrieve input_ids and inputs_embeds
518
+ if input_ids is not None and inputs_embeds is not None:
519
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
520
+ elif input_ids is not None:
521
+ batch_size, seq_length = input_ids.shape
522
+ elif inputs_embeds is not None:
523
+ batch_size, seq_length, _ = inputs_embeds.shape
524
+ else:
525
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
526
+
527
+ seq_length_with_past = seq_length
528
+ past_key_values_length = 0
529
+
530
+ if past_key_values is not None:
531
+ past_key_values_length = past_key_values[0][0].shape[2]
532
+ seq_length_with_past = seq_length_with_past + past_key_values_length
533
+
534
+ if position_ids is None:
535
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
536
+ position_ids = torch.arange(
537
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
538
+ )
539
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
540
+ else:
541
+ position_ids = position_ids.view(-1, seq_length).long()
542
+
543
+ if inputs_embeds is None:
544
+ inputs_embeds = self.embed_tokens(input_ids)
545
+ # embed positions
546
+ if attention_mask is None:
547
+ attention_mask = torch.ones(
548
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
549
+ )
550
+ attention_mask = self._prepare_decoder_attention_mask(
551
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
552
+ )
553
+
554
+ hidden_states = inputs_embeds
555
+
556
+ if self.gradient_checkpointing and self.training:
557
+ if use_cache:
558
+ logger.warning_once(
559
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
560
+ )
561
+ use_cache = False
562
+
563
+ # decoder layers
564
+ all_hidden_states = () if output_hidden_states else None
565
+ all_self_attns = () if output_attentions else None
566
+ next_decoder_cache = () if use_cache else None
567
+
568
+ for idx, decoder_layer in enumerate(self.layers):
569
+ if output_hidden_states:
570
+ all_hidden_states += (hidden_states,)
571
+
572
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
573
+
574
+ if self.gradient_checkpointing and self.training:
575
+
576
+ def create_custom_forward(module):
577
+ def custom_forward(*inputs):
578
+ # None for past_key_value
579
+ return module(*inputs, output_attentions, None)
580
+
581
+ return custom_forward
582
+
583
+ layer_outputs = torch.utils.checkpoint.checkpoint(
584
+ create_custom_forward(decoder_layer),
585
+ hidden_states,
586
+ attention_mask,
587
+ position_ids,
588
+ None,
589
+ )
590
+ else:
591
+ layer_outputs = decoder_layer(
592
+ hidden_states,
593
+ attention_mask=attention_mask,
594
+ position_ids=position_ids,
595
+ past_key_value=past_key_value,
596
+ output_attentions=output_attentions,
597
+ use_cache=use_cache,
598
+ )
599
+
600
+ hidden_states = layer_outputs[0]
601
+
602
+ if use_cache:
603
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
604
+
605
+ if output_attentions:
606
+ all_self_attns += (layer_outputs[1],)
607
+
608
+ hidden_states = self.norm(hidden_states)
609
+
610
+ # add hidden states from the last decoder layer
611
+ if output_hidden_states:
612
+ all_hidden_states += (hidden_states,)
613
+
614
+ next_cache = next_decoder_cache if use_cache else None
615
+ if not return_dict:
616
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
617
+ return BaseModelOutputWithPast(
618
+ last_hidden_state=hidden_states,
619
+ past_key_values=next_cache,
620
+ hidden_states=all_hidden_states,
621
+ attentions=all_self_attns,
622
+ )
623
+
624
+
625
+ class LlamaForCausalLM(LlamaPreTrainedModel):
626
+ def __init__(self, config):
627
+ super().__init__(config)
628
+ self.model = LlamaModel(config)
629
+
630
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
631
+
632
+ # Initialize weights and apply final processing
633
+ self.post_init()
634
+
635
+ def get_input_embeddings(self):
636
+ return self.model.embed_tokens
637
+
638
+ def set_input_embeddings(self, value):
639
+ self.model.embed_tokens = value
640
+
641
+ def get_output_embeddings(self):
642
+ return self.lm_head
643
+
644
+ def set_output_embeddings(self, new_embeddings):
645
+ self.lm_head = new_embeddings
646
+
647
+ def set_decoder(self, decoder):
648
+ self.model = decoder
649
+
650
+ def get_decoder(self):
651
+ return self.model
652
+
653
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
654
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
655
+ def forward(
656
+ self,
657
+ input_ids: torch.LongTensor = None,
658
+ attention_mask: Optional[torch.Tensor] = None,
659
+ position_ids: Optional[torch.LongTensor] = None,
660
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
661
+ inputs_embeds: Optional[torch.FloatTensor] = None,
662
+ labels: Optional[torch.LongTensor] = None,
663
+ use_cache: Optional[bool] = None,
664
+ output_attentions: Optional[bool] = None,
665
+ output_hidden_states: Optional[bool] = None,
666
+ return_dict: Optional[bool] = None,
667
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
668
+ r"""
669
+ Args:
670
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
671
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
672
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
673
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
674
+
675
+ Returns:
676
+
677
+ Example:
678
+
679
+ ```python
680
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
681
+
682
+ >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
683
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
684
+
685
+ >>> prompt = "Hey, are you consciours? Can you talk to me?"
686
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
687
+
688
+ >>> # Generate
689
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
690
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
691
+ "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
692
+ ```"""
693
+
694
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
695
+ output_hidden_states = (
696
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
697
+ )
698
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
699
+
700
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
701
+ outputs = self.model(
702
+ input_ids=input_ids,
703
+ attention_mask=attention_mask,
704
+ position_ids=position_ids,
705
+ past_key_values=past_key_values,
706
+ inputs_embeds=inputs_embeds,
707
+ use_cache=use_cache,
708
+ output_attentions=output_attentions,
709
+ output_hidden_states=output_hidden_states,
710
+ return_dict=return_dict,
711
+ )
712
+
713
+ hidden_states = outputs[0]
714
+ logits = self.lm_head(hidden_states)
715
+
716
+ loss = None
717
+ if labels is not None:
718
+ # Shift so that tokens < n predict n
719
+ shift_logits = logits[..., :-1, :].contiguous()
720
+ shift_labels = labels[..., 1:].contiguous()
721
+ # Flatten the tokens
722
+ loss_fct = CrossEntropyLoss()
723
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
724
+ shift_labels = shift_labels.view(-1)
725
+ # Enable model parallelism
726
+ shift_labels = shift_labels.to(shift_logits.device)
727
+ loss = loss_fct(shift_logits, shift_labels)
728
+
729
+ if not return_dict:
730
+ output = (logits,) + outputs[1:]
731
+ return (loss,) + output if loss is not None else output
732
+
733
+ return CausalLMOutputWithPast(
734
+ loss=loss,
735
+ logits=logits,
736
+ past_key_values=outputs.past_key_values,
737
+ hidden_states=outputs.hidden_states,
738
+ attentions=outputs.attentions,
739
+ )
740
+
741
+ def prepare_inputs_for_generation(
742
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
743
+ ):
744
+ if past_key_values:
745
+ input_ids = input_ids[:, -1:]
746
+
747
+ position_ids = kwargs.get("position_ids", None)
748
+ if attention_mask is not None and position_ids is None:
749
+ # create position_ids on the fly for batch generation
750
+ position_ids = attention_mask.long().cumsum(-1) - 1
751
+ position_ids.masked_fill_(attention_mask == 0, 1)
752
+ if past_key_values:
753
+ position_ids = position_ids[:, -1].unsqueeze(-1)
754
+
755
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
756
+ if inputs_embeds is not None and past_key_values is None:
757
+ model_inputs = {"inputs_embeds": inputs_embeds}
758
+ else:
759
+ model_inputs = {"input_ids": input_ids}
760
+
761
+ model_inputs.update(
762
+ {
763
+ "position_ids": position_ids,
764
+ "past_key_values": past_key_values,
765
+ "use_cache": kwargs.get("use_cache"),
766
+ "attention_mask": attention_mask,
767
+ }
768
+ )
769
+ return model_inputs
770
+
771
+ @staticmethod
772
+ def _reorder_cache(past_key_values, beam_idx):
773
+ reordered_past = ()
774
+ for layer_past in past_key_values:
775
+ reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
776
+ return reordered_past
777
+
778
+
779
+ @add_start_docstrings(
780
+ """
781
+ The LLaMa Model transformer with a sequence classification head on top (linear layer).
782
+
783
+ [`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
784
+ (e.g. GPT-2) do.
785
+
786
+ Since it does classification on the last token, it requires to know the position of the last token. If a
787
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
788
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
789
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
790
+ each row of the batch).
791
+ """,
792
+ LLAMA_START_DOCSTRING,
793
+ )
794
+ class LlamaForSequenceClassification(LlamaPreTrainedModel):
795
+ _keys_to_ignore_on_load_missing = [r"lm_head.weight"]
796
+
797
+ def __init__(self, config):
798
+ super().__init__(config)
799
+ self.num_labels = config.num_labels
800
+ self.model = LlamaModel(config)
801
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
802
+
803
+ # Initialize weights and apply final processing
804
+ self.post_init()
805
+
806
+ def get_input_embeddings(self):
807
+ return self.model.embed_tokens
808
+
809
+ def set_input_embeddings(self, value):
810
+ self.model.embed_tokens = value
811
+
812
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
813
+ def forward(
814
+ self,
815
+ input_ids: torch.LongTensor = None,
816
+ attention_mask: Optional[torch.Tensor] = None,
817
+ position_ids: Optional[torch.LongTensor] = None,
818
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
819
+ inputs_embeds: Optional[torch.FloatTensor] = None,
820
+ labels: Optional[torch.LongTensor] = None,
821
+ use_cache: Optional[bool] = None,
822
+ output_attentions: Optional[bool] = None,
823
+ output_hidden_states: Optional[bool] = None,
824
+ return_dict: Optional[bool] = None,
825
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
826
+ r"""
827
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
828
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
829
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
830
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
831
+ """
832
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
833
+
834
+ transformer_outputs = self.model(
835
+ input_ids,
836
+ attention_mask=attention_mask,
837
+ position_ids=position_ids,
838
+ past_key_values=past_key_values,
839
+ inputs_embeds=inputs_embeds,
840
+ use_cache=use_cache,
841
+ output_attentions=output_attentions,
842
+ output_hidden_states=output_hidden_states,
843
+ return_dict=return_dict,
844
+ )
845
+ hidden_states = transformer_outputs[0]
846
+ logits = self.score(hidden_states)
847
+
848
+ if input_ids is not None:
849
+ batch_size = input_ids.shape[0]
850
+ else:
851
+ batch_size = inputs_embeds.shape[0]
852
+
853
+ if self.config.pad_token_id is None and batch_size != 1:
854
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
855
+ if self.config.pad_token_id is None:
856
+ sequence_lengths = -1
857
+ else:
858
+ if input_ids is not None:
859
+ sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
860
+ else:
861
+ sequence_lengths = -1
862
+
863
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
864
+
865
+ loss = None
866
+ if labels is not None:
867
+ labels = labels.to(logits.device)
868
+ if self.config.problem_type is None:
869
+ if self.num_labels == 1:
870
+ self.config.problem_type = "regression"
871
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
872
+ self.config.problem_type = "single_label_classification"
873
+ else:
874
+ self.config.problem_type = "multi_label_classification"
875
+
876
+ if self.config.problem_type == "regression":
877
+ loss_fct = MSELoss()
878
+ if self.num_labels == 1:
879
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
880
+ else:
881
+ loss = loss_fct(pooled_logits, labels)
882
+ elif self.config.problem_type == "single_label_classification":
883
+ loss_fct = CrossEntropyLoss()
884
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
885
+ elif self.config.problem_type == "multi_label_classification":
886
+ loss_fct = BCEWithLogitsLoss()
887
+ loss = loss_fct(pooled_logits, labels)
888
+ if not return_dict:
889
+ output = (pooled_logits,) + transformer_outputs[1:]
890
+ return ((loss,) + output) if loss is not None else output
891
+
892
+ return SequenceClassifierOutputWithPast(
893
+ loss=loss,
894
+ logits=pooled_logits,
895
+ past_key_values=transformer_outputs.past_key_values,
896
+ hidden_states=transformer_outputs.hidden_states,
897
+ attentions=transformer_outputs.attentions,
898
+ )