Lguyogiro's picture
nhi_heldout-speaker-exp_MJM502_mms-1b-nhi-adapterft
a1b09cc verified
metadata
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - wer
model-index:
  - name: nhi_heldout-speaker-exp_MJM502_mms-1b-nhi-adapterft
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: test
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 0.4966996699669967

nhi_heldout-speaker-exp_MJM502_mms-1b-nhi-adapterft

This model is a fine-tuned version of facebook/mms-1b-all on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7134
  • Wer: 0.4967
  • Cer: 0.1520

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
1.0124 1.6393 200 0.9195 0.7361 0.2359
0.8011 3.2787 400 0.8468 0.7438 0.2192
0.7141 4.9180 600 0.7913 0.6398 0.2030
0.6767 6.5574 800 0.7461 0.6248 0.1987
0.629 8.1967 1000 0.7092 0.6241 0.1901
0.5964 9.8361 1200 0.7196 0.5959 0.1848
0.5531 11.4754 1400 0.6797 0.6012 0.1894
0.5541 13.1148 1600 0.6817 0.5659 0.1765
0.5166 14.7541 1800 0.6663 0.5588 0.1686
0.4807 16.3934 2000 0.6741 0.5567 0.1729
0.5044 18.0328 2200 0.6592 0.5455 0.1685
0.48 19.6721 2400 0.6720 0.5484 0.1698
0.467 21.3115 2600 0.6492 0.5479 0.1661
0.4634 22.9508 2800 0.6508 0.5430 0.1659
0.4503 24.5902 3000 0.6551 0.5521 0.1705
0.4373 26.2295 3200 0.6560 0.5328 0.1640
0.4139 27.8689 3400 0.6635 0.5354 0.1642
0.4093 29.5082 3600 0.6482 0.5310 0.1623
0.3878 31.1475 3800 0.6557 0.5158 0.1598
0.3967 32.7869 4000 0.6564 0.5253 0.1615
0.3724 34.4262 4200 0.6564 0.5121 0.1587
0.3791 36.0656 4400 0.6628 0.5172 0.1589
0.3608 37.7049 4600 0.6710 0.5231 0.1626
0.364 39.3443 4800 0.6523 0.5088 0.1575
0.3472 40.9836 5000 0.6687 0.5251 0.1623
0.3432 42.6230 5200 0.6622 0.5200 0.1598
0.3459 44.2623 5400 0.6517 0.5128 0.1569
0.3135 45.9016 5600 0.6543 0.5184 0.1606
0.3158 47.5410 5800 0.6571 0.5176 0.1590
0.3266 49.1803 6000 0.6657 0.5146 0.1567
0.2958 50.8197 6200 0.6676 0.5099 0.1563
0.2872 52.4590 6400 0.6734 0.5119 0.1572
0.2789 54.0984 6600 0.6743 0.5166 0.1575
0.287 55.7377 6800 0.6944 0.5111 0.1557
0.2911 57.3770 7000 0.6754 0.5052 0.1548
0.2782 59.0164 7200 0.6671 0.5095 0.1551
0.2694 60.6557 7400 0.6752 0.5040 0.1532
0.2598 62.2951 7600 0.6878 0.5113 0.1562
0.2688 63.9344 7800 0.6622 0.5064 0.1548
0.2633 65.5738 8000 0.6940 0.5075 0.1557
0.2454 67.2131 8200 0.6961 0.5025 0.1522
0.245 68.8525 8400 0.7007 0.5048 0.1540
0.24 70.4918 8600 0.6965 0.5088 0.1552
0.2456 72.1311 8800 0.6918 0.5092 0.1553
0.2429 73.7705 9000 0.7023 0.5075 0.1550
0.2283 75.4098 9200 0.7149 0.5084 0.1555
0.2236 77.0492 9400 0.7001 0.5083 0.1547
0.2299 78.6885 9600 0.6943 0.5035 0.1539
0.2184 80.3279 9800 0.7046 0.5068 0.1535
0.2142 81.9672 10000 0.6988 0.4985 0.1524
0.2123 83.6066 10200 0.7084 0.4987 0.1520
0.2197 85.2459 10400 0.7023 0.5002 0.1514
0.2012 86.8852 10600 0.7108 0.5024 0.1526
0.2079 88.5246 10800 0.7081 0.4986 0.1525
0.209 90.1639 11000 0.7056 0.5047 0.1533
0.1943 91.8033 11200 0.7143 0.5005 0.1518
0.1965 93.4426 11400 0.7077 0.4988 0.1522
0.1886 95.0820 11600 0.7179 0.4960 0.1516
0.2085 96.7213 11800 0.7170 0.4979 0.1520
0.1812 98.3607 12000 0.7129 0.4978 0.1523
0.1904 100.0 12200 0.7134 0.4967 0.1520

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.4.0
  • Datasets 3.2.0
  • Tokenizers 0.19.1