Lguyogiro commited on
Commit
a1b09cc
·
verified ·
1 Parent(s): 067df2b

nhi_heldout-speaker-exp_MJM502_mms-1b-nhi-adapterft

Browse files
Files changed (2) hide show
  1. README.md +135 -196
  2. adapter.nhi.safetensors +3 -0
README.md CHANGED
@@ -1,199 +1,138 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: cc-by-nc-4.0
3
+ base_model: facebook/mms-1b-all
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - audiofolder
8
+ metrics:
9
+ - wer
10
+ model-index:
11
+ - name: nhi_heldout-speaker-exp_MJM502_mms-1b-nhi-adapterft
12
+ results:
13
+ - task:
14
+ name: Automatic Speech Recognition
15
+ type: automatic-speech-recognition
16
+ dataset:
17
+ name: audiofolder
18
+ type: audiofolder
19
+ config: default
20
+ split: test
21
+ args: default
22
+ metrics:
23
+ - name: Wer
24
+ type: wer
25
+ value: 0.4966996699669967
26
  ---
27
 
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # nhi_heldout-speaker-exp_MJM502_mms-1b-nhi-adapterft
32
+
33
+ This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the audiofolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.7134
36
+ - Wer: 0.4967
37
+ - Cer: 0.1520
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 0.001
57
+ - train_batch_size: 16
58
+ - eval_batch_size: 32
59
+ - seed: 42
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_steps: 100
63
+ - num_epochs: 100
64
+ - mixed_precision_training: Native AMP
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
69
+ |:-------------:|:-------:|:-----:|:---------------:|:------:|:------:|
70
+ | 1.0124 | 1.6393 | 200 | 0.9195 | 0.7361 | 0.2359 |
71
+ | 0.8011 | 3.2787 | 400 | 0.8468 | 0.7438 | 0.2192 |
72
+ | 0.7141 | 4.9180 | 600 | 0.7913 | 0.6398 | 0.2030 |
73
+ | 0.6767 | 6.5574 | 800 | 0.7461 | 0.6248 | 0.1987 |
74
+ | 0.629 | 8.1967 | 1000 | 0.7092 | 0.6241 | 0.1901 |
75
+ | 0.5964 | 9.8361 | 1200 | 0.7196 | 0.5959 | 0.1848 |
76
+ | 0.5531 | 11.4754 | 1400 | 0.6797 | 0.6012 | 0.1894 |
77
+ | 0.5541 | 13.1148 | 1600 | 0.6817 | 0.5659 | 0.1765 |
78
+ | 0.5166 | 14.7541 | 1800 | 0.6663 | 0.5588 | 0.1686 |
79
+ | 0.4807 | 16.3934 | 2000 | 0.6741 | 0.5567 | 0.1729 |
80
+ | 0.5044 | 18.0328 | 2200 | 0.6592 | 0.5455 | 0.1685 |
81
+ | 0.48 | 19.6721 | 2400 | 0.6720 | 0.5484 | 0.1698 |
82
+ | 0.467 | 21.3115 | 2600 | 0.6492 | 0.5479 | 0.1661 |
83
+ | 0.4634 | 22.9508 | 2800 | 0.6508 | 0.5430 | 0.1659 |
84
+ | 0.4503 | 24.5902 | 3000 | 0.6551 | 0.5521 | 0.1705 |
85
+ | 0.4373 | 26.2295 | 3200 | 0.6560 | 0.5328 | 0.1640 |
86
+ | 0.4139 | 27.8689 | 3400 | 0.6635 | 0.5354 | 0.1642 |
87
+ | 0.4093 | 29.5082 | 3600 | 0.6482 | 0.5310 | 0.1623 |
88
+ | 0.3878 | 31.1475 | 3800 | 0.6557 | 0.5158 | 0.1598 |
89
+ | 0.3967 | 32.7869 | 4000 | 0.6564 | 0.5253 | 0.1615 |
90
+ | 0.3724 | 34.4262 | 4200 | 0.6564 | 0.5121 | 0.1587 |
91
+ | 0.3791 | 36.0656 | 4400 | 0.6628 | 0.5172 | 0.1589 |
92
+ | 0.3608 | 37.7049 | 4600 | 0.6710 | 0.5231 | 0.1626 |
93
+ | 0.364 | 39.3443 | 4800 | 0.6523 | 0.5088 | 0.1575 |
94
+ | 0.3472 | 40.9836 | 5000 | 0.6687 | 0.5251 | 0.1623 |
95
+ | 0.3432 | 42.6230 | 5200 | 0.6622 | 0.5200 | 0.1598 |
96
+ | 0.3459 | 44.2623 | 5400 | 0.6517 | 0.5128 | 0.1569 |
97
+ | 0.3135 | 45.9016 | 5600 | 0.6543 | 0.5184 | 0.1606 |
98
+ | 0.3158 | 47.5410 | 5800 | 0.6571 | 0.5176 | 0.1590 |
99
+ | 0.3266 | 49.1803 | 6000 | 0.6657 | 0.5146 | 0.1567 |
100
+ | 0.2958 | 50.8197 | 6200 | 0.6676 | 0.5099 | 0.1563 |
101
+ | 0.2872 | 52.4590 | 6400 | 0.6734 | 0.5119 | 0.1572 |
102
+ | 0.2789 | 54.0984 | 6600 | 0.6743 | 0.5166 | 0.1575 |
103
+ | 0.287 | 55.7377 | 6800 | 0.6944 | 0.5111 | 0.1557 |
104
+ | 0.2911 | 57.3770 | 7000 | 0.6754 | 0.5052 | 0.1548 |
105
+ | 0.2782 | 59.0164 | 7200 | 0.6671 | 0.5095 | 0.1551 |
106
+ | 0.2694 | 60.6557 | 7400 | 0.6752 | 0.5040 | 0.1532 |
107
+ | 0.2598 | 62.2951 | 7600 | 0.6878 | 0.5113 | 0.1562 |
108
+ | 0.2688 | 63.9344 | 7800 | 0.6622 | 0.5064 | 0.1548 |
109
+ | 0.2633 | 65.5738 | 8000 | 0.6940 | 0.5075 | 0.1557 |
110
+ | 0.2454 | 67.2131 | 8200 | 0.6961 | 0.5025 | 0.1522 |
111
+ | 0.245 | 68.8525 | 8400 | 0.7007 | 0.5048 | 0.1540 |
112
+ | 0.24 | 70.4918 | 8600 | 0.6965 | 0.5088 | 0.1552 |
113
+ | 0.2456 | 72.1311 | 8800 | 0.6918 | 0.5092 | 0.1553 |
114
+ | 0.2429 | 73.7705 | 9000 | 0.7023 | 0.5075 | 0.1550 |
115
+ | 0.2283 | 75.4098 | 9200 | 0.7149 | 0.5084 | 0.1555 |
116
+ | 0.2236 | 77.0492 | 9400 | 0.7001 | 0.5083 | 0.1547 |
117
+ | 0.2299 | 78.6885 | 9600 | 0.6943 | 0.5035 | 0.1539 |
118
+ | 0.2184 | 80.3279 | 9800 | 0.7046 | 0.5068 | 0.1535 |
119
+ | 0.2142 | 81.9672 | 10000 | 0.6988 | 0.4985 | 0.1524 |
120
+ | 0.2123 | 83.6066 | 10200 | 0.7084 | 0.4987 | 0.1520 |
121
+ | 0.2197 | 85.2459 | 10400 | 0.7023 | 0.5002 | 0.1514 |
122
+ | 0.2012 | 86.8852 | 10600 | 0.7108 | 0.5024 | 0.1526 |
123
+ | 0.2079 | 88.5246 | 10800 | 0.7081 | 0.4986 | 0.1525 |
124
+ | 0.209 | 90.1639 | 11000 | 0.7056 | 0.5047 | 0.1533 |
125
+ | 0.1943 | 91.8033 | 11200 | 0.7143 | 0.5005 | 0.1518 |
126
+ | 0.1965 | 93.4426 | 11400 | 0.7077 | 0.4988 | 0.1522 |
127
+ | 0.1886 | 95.0820 | 11600 | 0.7179 | 0.4960 | 0.1516 |
128
+ | 0.2085 | 96.7213 | 11800 | 0.7170 | 0.4979 | 0.1520 |
129
+ | 0.1812 | 98.3607 | 12000 | 0.7129 | 0.4978 | 0.1523 |
130
+ | 0.1904 | 100.0 | 12200 | 0.7134 | 0.4967 | 0.1520 |
131
+
132
+
133
+ ### Framework versions
134
+
135
+ - Transformers 4.41.2
136
+ - Pytorch 2.4.0
137
+ - Datasets 3.2.0
138
+ - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adapter.nhi.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ed8e8a914c5f7f60752aa933c7a62aaa3fcc94a0d555bfa2ae538a7fc3c4b3f
3
+ size 8834400