File size: 10,235 Bytes
c9f16b8
 
 
 
 
 
 
 
 
 
 
60a8f97
 
4a0ff60
 
 
 
b869cdf
 
 
 
60a8f97
f95d63f
60a8f97
751e527
 
 
 
 
 
 
790f0aa
 
 
60a8f97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03e8a27
60a8f97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e5fa54
ba27280
160aa16
bb9a834
 
 
 
 
60a8f97
 
 
 
 
 
 
 
 
 
 
 
 
 
61cc245
60a8f97
 
 
 
61cc245
60a8f97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04ab6b4
60a8f97
01f9b3b
60a8f97
04ab6b4
60a8f97
 
 
def8f3f
60a8f97
 
 
 
fccd79b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
---
license: apache-2.0
language:
- en
pipeline_tag: text-generation
library_name: transformers
tags:
- llm
- code
---

# CrystalCoder

<center><img src="crystalcoder_logo.jpg" alt="crystal coder logo" width="300"/></center>


CrystalCoder is a 7B parameter language model, distinctively trained on the SlimPajama and StarCoder datasets. 
This model excels in balancing natural language processing and coding capabilities. 
Despite being trained on a smaller dataset of 1.4 trillion tokens—compared to LLaMA 2's 2 trillion—CrystalCoder surpasses LLaMA 2 in some challenging English and coding tasks. 
It demonstrates superior performance in benchmarks like MMLU, HumanEval, and MBPP. 
By comparing CrystalCoder with other similar work, CrystalCoder is quite balance on language and coding tasks.

<center><img src="performance_in_benchmarks.png" alt="performance in benchmarks" /></center>

**Notes**
- We compute all evaluation metrics ourselves.
- Language benchmarks are computed following the convention of [the Huggingface Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard), which means
AI2 Reasoning Challenge in 25-shot, HellaSwag in 10-shot, MMLU computed in 5-shot, TruthfulQA in 0-shot.
- As reported in prior work, the choice of temperature affect the programming metrics a lot, we evaluate all models with the following temperature:
   - Scores for HumanEval is computed with a temperature of 0.2
   - Scores for MBPP is computed with a temperature of 0.1
- For detailed token breakdown of CrystalCoder dataset, refer to the [CrystalCoder dataset repository](https://huggingface.co/datasets/LLM360/CrystalCoderDatasets).

 
## About LLM360
LLM360 is an initiative for comprehensive and fully open-sourced LLMs, 
where all training details, model checkpoints, intermediate results, and 
additional analyses are made available to the community. Our goal is to advance 
the field by inviting the community to deepen the understanding of LLMs 
together. As the first step of the project LLM360, we release all intermediate 
model checkpoints, our fully-prepared pre-training dataset, all source code and
configurations, and training details. We are
committed to continually pushing the boundaries of LLMs through this open-source 
effort.

Get access now at [LLM360 site](https://www.llm360.ai/)

## Model Description

- **Model type:** Language model with the same architecture as LLaMA-7B
- **Language(s) (NLP):** English
- **License:** Apache 2.0
- **Resources for more information:**
  - [Training Code](https://github.com/LLM360/crystalcoder-train)
  - [Data Preparation](https://github.com/LLM360/crystalcoder-data-prep)
  - [Metrics](https://github.com/LLM360/Analysis360)
  - [Fully processed CrystalCoder pretraining data](https://huggingface.co/datasets/LLM360/CrystalCoderDatasets)

# Model Architecture

CrystalCoder leverages a GPT-like architecture, akin to LLaMA, but with the addition of maximal update parameterization (**muP**). 

Key modifications introduced by muP include:

1. Input embeddings are scaled by `mup_embeddings_scale`.
2. Output logits are scaled by `mup_output_alpha` * `mup_width_scale`.
3. Attention weights scaling is refined to division by the hidden dimension size (`(QK^T)/d`) instead of its square root (`(QK^T)/sqrt(d)`).
4. Learning rates and weight decay are optimized for different parameter groups:
   - Embedding layer: LR=`BASE_LR`, WD=`BASE_WD`.
   - Normalization layers: LR=`BASE_LR`, WD=0.
   - Other Parameters: LR=`BASE_LR` * `mup_width_scale`, WD=`BASE_WD`.
5. Initialization ranges are determined based on muP hyperparameters.

The muP hyperparameters are set as follows:

- `mup_embeddings_scale`: 14.6
- `mup_output_alpha`: 2.22
- `mup_width_scale`: 0.0625

For other architecture choices:
- We use `LayerNorm` instead of `RMSNorm`.
- Rotary position embeddings applied to only the first `25%` of hidden dimensions.
- Training sequence length is `2048`.
- Embedding dimension is `32032`.

# Tokenization

Our tokenizer is based on the LLaMA tokenizer, with 22 additional special tokens for the following usage:
- 4 filling-in-middle (FIM) tokens such as `<|fim_prefix|>` to support FIM inference.
- 14 spcial tokens such as `<|filename|>`, `<|jupyter_start|>`, `<|reponame|>` to support meta data for code dataset following StarCoder's method.
- 4 special tokens such as `<|sys_start|>`, `<|im_start|>` to support instruction tuning.

Therefore, we extended the LLaMA tokenizer vocabulary size from `32000` to `32032`. Some token ids are reserved and not used.

# Training

Our training has 3 stages:
- Stage 1: Pretraining on first half of SlimPajama (50% x 690B = 345B).
- Stage 2: Pretraining on the other half of SlimPajama (50% x 690B = 345B), plus two epochs of StarCoder Data (2 x 291B).
- Stage 3: Pretraining on `100B` additional Python and web-related data (HTML, JavaScript, CSS) sampled from StarCoder Data, and `10B` tokens sampled from SlimPajama.

For details of the training dataset for each stage, please refer to the Dataset section and our CrystalCoder Data Card.

For hyperparameters used in each stage, please refer to the following table:

| **Hyperparameter** | **Phase 1** | **Phase 2** | **Phase 3** |
| --- | --- | --- | --- |
| LR Warmup Steps| 86 | 86 | 276 |
| LR Start Value | 0.012 | 0.0087825 | 0.002 |
| LR Final Value | 0.00012408 | 0.00013679 | 0.0002 |
| LR Decay | Linear | Linear | Linear |

For more details of training, please refer to [our paper](https://arxiv.org/pdf/2312.06550.pdf).

# Dataset

Our tokenized datasets for all phases are available at [CrystalCoderDatasets](https://huggingface.co/datasets/LLM360/CrystalCoderDatasets).


# Model Usage

To load a specific checkpoint, use the revision argument as shown below, for example, `CrystalCoder_phase1_checkpoint_055500`. All the revisions can be seen from the branch dropdown in the "Files and versions" tab. If no revision argument is provided, it will load the phase 3 final checkpoint `CrystalCoder_phase3_checkpoint_027728`.

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained(
    "LLM360/CrystalCoder",
    revision="CrystalCoder_phase1_checkpoint_055500",
    trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
    "LLM360/CrystalCoder",
    revision="CrystalCoder_phase1_checkpoint_055500",
    trust_remote_code=True
)

prompt = 'int add(int x, int y) {'

input_ids = tokenizer(prompt, return_tensors="pt").input_ids
gen_tokens = model.generate(input_ids, do_sample=True, max_length=400)

print("-"*20 + "Output for model"  + 20 * '-')
print(tokenizer.batch_decode(gen_tokens)[0])
```

## Completion Example:

### prompt:

```python
from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:
""" Check if in given list of numbers, are any two numbers closer to each other than given threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5) False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) True """
```

### response:

```python
from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:
""" Check if in given list of numbers, are any two numbers closer to each other than given threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5) False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) True """
    pass

# Fill in this function. It should return the index into `numbers` where the closest pair should be inserted.
def closest_pair(numbers: List[float], threshold: float) -> int:
""" Find the closest pair in a given list ofalso numbers.

    Assumes all the numbers are numbers in the list are positive.
    Returns the correct index into `numbers` where the closest pair should be inserted. This
    number is the *first* element of the closest pair.

>>> closest_pair([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.25) 1
>>> closest_pair([12.8, 12.0], 0.0) 0
>>> closest_pair([12.8, 12.0, 12.5, 12.1], 0.0) 1
>>> closest_pair([12.8, 11.5, 12.0, 12.5, 12.1], 0.0) 2 """
    pass

<unk> import torch
import numpy as np
```
# Training Logs and Evaluation Results

Please refer to our [W&B project page](https://wandb.ai/llm360/CrystalCoder) for complete training logs and evaluation results.

Selected Metrics are displayed below.

|HumanEval                                                 | MBPP                                                 |
|-----------------------------------------------------|-----------------------------------------------------------|
|<img src="cc-humaneval-1.png" alt="humaneval" width="400"/> | <img src="cc-mbpp-1.png" alt="mbpp" width="400"/> |

| ARC                                                 | HellaSwag                                                  | 
|------------------------------------------------------|------------------------------------------------------------|
| <img src="cc-arc-1.png" alt="arc" width="400"/> | <img src="cc-hellaswag-1.png" alt="hellaswag" width="400"/> | 

|MMLU                                                 | TruthfulQA                                                 |
|-----------------------------------------------------|-----------------------------------------------------------|
|<img src="cc-mmlu-1.png" alt="mmlu" width="400"/> | <img src="cc-truthful-1.png" alt="truthfulqa" width="400"/> |


# CrystalCoder-Instruct

We also have instruction tuned versions of CrystalCoder, based on stage 2 and stage 3 final checkpoints. The Instruct version will be released later.

# Citation

**BibTeX:**

```bibtex
@misc{liu2023llm360,
      title={LLM360: Towards Fully Transparent Open-Source LLMs}, 
      author={Zhengzhong Liu and Aurick Qiao and Willie Neiswanger and Hongyi Wang and Bowen Tan and Tianhua Tao and Junbo Li and Yuqi Wang and Suqi Sun and Omkar Pangarkar and Richard Fan and Yi Gu and Victor Miller and Yonghao Zhuang and Guowei He and Haonan Li and Fajri Koto and Liping Tang and Nikhil Ranjan and Zhiqiang Shen and Xuguang Ren and Roberto Iriondo and Cun Mu and Zhiting Hu and Mark Schulze and Preslav Nakov and Tim Baldwin and Eric P. Xing},
      year={2023},
      eprint={2312.06550},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```