LLM360-MBZUAI
commited on
change table of performance in benchmarks
Browse filesreplace the table with a premade table picture
README.md
CHANGED
@@ -20,16 +20,7 @@ Despite being trained on a smaller dataset of 1.4 trillion tokens—compared to
|
|
20 |
It demonstrates superior performance in benchmarks like MMLU, HumanEval, and MBPP.
|
21 |
By comparing CrystalCoder with other similar work, CrystalCoder is quite balance on language and coding tasks.
|
22 |
|
23 |
-
|
24 |
-
|:-------------------:|:--------------:|:------------:|:-------------:|:-----------:|:-----:|:---------:|:-------------:|:----------:|:------------------:|:-------------:|
|
25 |
-
| Mistral 7B | - | 48.68 | 62.40 | 33.95 | 59.98 | 83.31 | 64.16 | 42.15 | 29.12 | 38.78 |
|
26 |
-
| **CrystalCoder 7B** | 1.27T | 39.56 | 51.68 | 27.44 | 47.44 | 74.38 | 48.42 | 36.46 | 23.90 | 30.988 |
|
27 |
-
| **CrystalCoder 7B Python/Web** | 1.4T | 41.65 | 50.92 | 32.38 | 47.01 | 71.97 | 48.78 | 35.91 | 28.38 | 36.38 |
|
28 |
-
| CodeLlaMA 7B Base | 2.5T | 40.24 | 46.16 | 34.32 | 42.75 | 64.74 | 39.98 | 37.19 | 30.06 | 38.573 |
|
29 |
-
| CodeLlaMA 7B - Python | 2.6T | 40.09 | 42.42 | 37.76 | 39.93 | 60.80 | 31.12 | 37.82 | 34.12 | 41.40 |
|
30 |
-
| OpenLLaMA v2 7B | 1T | 38.10 | 48.18 | 28.01 | 43.60 | 72.20 | 41.29 | 35.54 | 15.32 | 12.69 |
|
31 |
-
| LLaMA 2 7B | 2T | 34.98 | 53.39 | 16.57 | 53.07 | 77.74 | 43.80 | 38.98 | 13.05 | 20.09 |
|
32 |
-
| StarCoder-15B | 1.03 | - | - | 38.46 | - | - | - | - | 33.63 | 43.28 |
|
33 |
|
34 |
**Notes**
|
35 |
- We compute all evaluation metrics ourselves.
|
|
|
20 |
It demonstrates superior performance in benchmarks like MMLU, HumanEval, and MBPP.
|
21 |
By comparing CrystalCoder with other similar work, CrystalCoder is quite balance on language and coding tasks.
|
22 |
|
23 |
+
<center><img src="performance_in_benchmarks.png" alt="performance in benchmarks" /></center>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
**Notes**
|
26 |
- We compute all evaluation metrics ourselves.
|