|
--- |
|
library_name: transformers |
|
language: |
|
- sq |
|
license: mit |
|
base_model: openai/whisper-large-v3-turbo |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- Kushtrim/audioshqip |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper Large v3 Turbo Shqip |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: Audio Shqip 50 orë |
|
type: Kushtrim/audioshqip |
|
args: 'config: sq, split: test' |
|
metrics: |
|
- type: wer |
|
value: 26.29520403254481 |
|
name: Wer |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Large v3 Turbo Shqip |
|
|
|
This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the Audio Shqip 50 orë dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5501 |
|
- Wer: 26.2952 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 10000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-------:|:-----:|:---------------:|:-------:| |
|
| 0.5589 | 0.5363 | 500 | 0.5765 | 40.2773 | |
|
| 0.391 | 1.0727 | 1000 | 0.4633 | 32.9234 | |
|
| 0.3557 | 1.6090 | 1500 | 0.4209 | 32.8188 | |
|
| 0.2288 | 2.1453 | 2000 | 0.4132 | 30.0056 | |
|
| 0.237 | 2.6817 | 2500 | 0.4012 | 29.9073 | |
|
| 0.1776 | 3.2180 | 3000 | 0.4055 | 30.2650 | |
|
| 0.1838 | 3.7544 | 3500 | 0.4034 | 29.6501 | |
|
| 0.1328 | 4.2907 | 4000 | 0.4109 | 29.3719 | |
|
| 0.1301 | 4.8270 | 4500 | 0.4052 | 28.7716 | |
|
| 0.1034 | 5.3634 | 5000 | 0.4231 | 27.3180 | |
|
| 0.0845 | 5.8997 | 5500 | 0.4296 | 27.5167 | |
|
| 0.0857 | 6.4360 | 6000 | 0.4526 | 26.9750 | |
|
| 0.0526 | 6.9724 | 6500 | 0.4550 | 27.2343 | |
|
| 0.0436 | 7.5087 | 7000 | 0.4833 | 27.2824 | |
|
| 0.0284 | 8.0451 | 7500 | 0.4983 | 26.5734 | |
|
| 0.0328 | 8.5814 | 8000 | 0.5043 | 26.8244 | |
|
| 0.0164 | 9.1177 | 8500 | 0.5225 | 26.5441 | |
|
| 0.0171 | 9.6541 | 9000 | 0.5318 | 26.2659 | |
|
| 0.019 | 10.1904 | 9500 | 0.5473 | 26.3182 | |
|
| 0.0253 | 10.7267 | 10000 | 0.5501 | 26.2952 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.2 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|