Kushtrim's picture
Upload tokenizer
f9315bc verified
metadata
library_name: transformers
language:
  - sq
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
  - generated_from_trainer
datasets:
  - Kushtrim/audioshqip
metrics:
  - wer
model-index:
  - name: Whisper Large v3 Turbo Shqip
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Audio Shqip 50 orë
          type: Kushtrim/audioshqip
          args: 'config: sq, split: test'
        metrics:
          - type: wer
            value: 26.29520403254481
            name: Wer

Whisper Large v3 Turbo Shqip

This model is a fine-tuned version of openai/whisper-large-v3-turbo on the Audio Shqip 50 orë dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5501
  • Wer: 26.2952

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.5589 0.5363 500 0.5765 40.2773
0.391 1.0727 1000 0.4633 32.9234
0.3557 1.6090 1500 0.4209 32.8188
0.2288 2.1453 2000 0.4132 30.0056
0.237 2.6817 2500 0.4012 29.9073
0.1776 3.2180 3000 0.4055 30.2650
0.1838 3.7544 3500 0.4034 29.6501
0.1328 4.2907 4000 0.4109 29.3719
0.1301 4.8270 4500 0.4052 28.7716
0.1034 5.3634 5000 0.4231 27.3180
0.0845 5.8997 5500 0.4296 27.5167
0.0857 6.4360 6000 0.4526 26.9750
0.0526 6.9724 6500 0.4550 27.2343
0.0436 7.5087 7000 0.4833 27.2824
0.0284 8.0451 7500 0.4983 26.5734
0.0328 8.5814 8000 0.5043 26.8244
0.0164 9.1177 8500 0.5225 26.5441
0.0171 9.6541 9000 0.5318 26.2659
0.019 10.1904 9500 0.5473 26.3182
0.0253 10.7267 10000 0.5501 26.2952

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3