|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: xlm-roberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: xlm-roberta-base-hin-finetuned |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xlm-roberta-base-hin-finetuned |
|
|
|
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1533 |
|
- F1: 0.7972 |
|
- Roc Auc: 0.8712 |
|
- Accuracy: 0.77 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| |
|
| 0.4175 | 1.0 | 109 | 0.3690 | 0.0 | 0.5 | 0.31 | |
|
| 0.3344 | 2.0 | 218 | 0.2807 | 0.1111 | 0.5445 | 0.37 | |
|
| 0.21 | 3.0 | 327 | 0.2053 | 0.6797 | 0.8067 | 0.68 | |
|
| 0.163 | 4.0 | 436 | 0.1533 | 0.7972 | 0.8712 | 0.77 | |
|
| 0.1295 | 5.0 | 545 | 0.1884 | 0.7004 | 0.8255 | 0.69 | |
|
| 0.1125 | 6.0 | 654 | 0.1590 | 0.7621 | 0.8558 | 0.75 | |
|
| 0.0841 | 7.0 | 763 | 0.1770 | 0.7533 | 0.8653 | 0.73 | |
|
| 0.0678 | 8.0 | 872 | 0.1517 | 0.7867 | 0.8813 | 0.75 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.0 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|