File size: 2,154 Bytes
bdbd24b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20a699a
 
 
 
bdbd24b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1fd826
 
 
 
 
 
 
 
bdbd24b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
library_name: transformers
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: xlm-roberta-base-hin-finetuned
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlm-roberta-base-hin-finetuned

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1533
- F1: 0.7972
- Roc Auc: 0.8712
- Accuracy: 0.77

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Roc Auc | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
| 0.4175        | 1.0   | 109  | 0.3690          | 0.0    | 0.5     | 0.31     |
| 0.3344        | 2.0   | 218  | 0.2807          | 0.1111 | 0.5445  | 0.37     |
| 0.21          | 3.0   | 327  | 0.2053          | 0.6797 | 0.8067  | 0.68     |
| 0.163         | 4.0   | 436  | 0.1533          | 0.7972 | 0.8712  | 0.77     |
| 0.1295        | 5.0   | 545  | 0.1884          | 0.7004 | 0.8255  | 0.69     |
| 0.1125        | 6.0   | 654  | 0.1590          | 0.7621 | 0.8558  | 0.75     |
| 0.0841        | 7.0   | 763  | 0.1770          | 0.7533 | 0.8653  | 0.73     |
| 0.0678        | 8.0   | 872  | 0.1517          | 0.7867 | 0.8813  | 0.75     |


### Framework versions

- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0