CS221-xlm-roberta-base-mar-finetuned-finetuned-mar-tapt
This model is a fine-tuned version of Kuongan/xlm-roberta-base-mar-finetuned on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0676
- F1: 0.9353
- Roc Auc: 0.9495
- Accuracy: 0.9019
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
0.0942 | 1.0 | 142 | 0.0676 | 0.9353 | 0.9495 | 0.9019 |
0.0837 | 2.0 | 284 | 0.0719 | 0.9320 | 0.9497 | 0.8951 |
0.0767 | 3.0 | 426 | 0.0709 | 0.9263 | 0.9478 | 0.8940 |
0.065 | 4.0 | 568 | 0.0780 | 0.9167 | 0.9399 | 0.8860 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 10
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Kuongan/CS221-xlm-roberta-base-mar-finetuned-finetuned-mar-tapt
Base model
FacebookAI/xlm-roberta-base
Finetuned
Kuongan/xlm-roberta-base-mar-finetuned