xlm-roberta-base-mar-finetuned
This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0808
- F1: 0.9187
- Roc Auc: 0.9428
- Accuracy: 0.89
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
0.4358 | 1.0 | 103 | 0.4160 | 0.0 | 0.5 | 0.2 |
0.3421 | 2.0 | 206 | 0.2726 | 0.3084 | 0.6288 | 0.46 |
0.2194 | 3.0 | 309 | 0.1598 | 0.8384 | 0.8947 | 0.82 |
0.1546 | 4.0 | 412 | 0.1125 | 0.9086 | 0.9233 | 0.87 |
0.1292 | 5.0 | 515 | 0.0980 | 0.9053 | 0.9386 | 0.87 |
0.1038 | 6.0 | 618 | 0.0808 | 0.9187 | 0.9428 | 0.89 |
0.0784 | 7.0 | 721 | 0.0798 | 0.9001 | 0.9354 | 0.86 |
0.0684 | 8.0 | 824 | 0.0785 | 0.8941 | 0.9245 | 0.87 |
0.073 | 9.0 | 927 | 0.0751 | 0.9014 | 0.9361 | 0.86 |
0.0481 | 10.0 | 1030 | 0.0765 | 0.9041 | 0.9281 | 0.87 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.