metadata
library_name: keras
language:
- en
pipeline_tag: text-classification
tags:
- toxic
- comment
- toxic comment
Model description
This model used for text classification with toxic and non-toxic labels.
Intended uses & limitations
If you want to reuse model, try copy this
from huggingface_hub import from_pretrained_keras
reloaded_model = from_pretrained_keras('Johnesss/Toxic-Comment-Classification')
y_testing=reloaded_model.predict(x_testing,verbose=1,batch_size=32)
test_df['Toxic']=['Not Toxic' if x<0.5 else 'Toxic' for x in y_testing]
test_df[['comment_text','Toxic']].head(20)
Training and evaluation data
Full info in .ipynb file
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
Hyperparameters | Value |
---|---|
name | Adam |
weight_decay | None |
clipnorm | None |
global_clipnorm | None |
clipvalue | None |
use_ema | False |
ema_momentum | 0.99 |
ema_overwrite_frequency | None |
jit_compile | False |
is_legacy_optimizer | False |
learning_rate | 0.0010000000474974513 |
beta_1 | 0.9 |
beta_2 | 0.999 |
epsilon | 1e-07 |
amsgrad | False |
training_precision | float32 |