--- library_name: keras language: - en pipeline_tag: text-classification tags: - toxic - comment - toxic comment --- ## Model description This model used for text classification with toxic and non-toxic labels. ## Intended uses & limitations If you want to reuse model, try copy this ``` from huggingface_hub import from_pretrained_keras reloaded_model = from_pretrained_keras('Johnesss/Toxic-Comment-Classification') y_testing=reloaded_model.predict(x_testing,verbose=1,batch_size=32) test_df['Toxic']=['Not Toxic' if x<0.5 else 'Toxic' for x in y_testing] test_df[['comment_text','Toxic']].head(20) ``` ## Training and evaluation data Full info in .ipynb file ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | weight_decay | None | | clipnorm | None | | global_clipnorm | None | | clipvalue | None | | use_ema | False | | ema_momentum | 0.99 | | ema_overwrite_frequency | None | | jit_compile | False | | is_legacy_optimizer | False | | learning_rate | 0.0010000000474974513 | | beta_1 | 0.9 | | beta_2 | 0.999 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 | ## Model Plot
View Model Plot ![Model Image](./model.png)