roberta-base-qnli / README.md
autoevaluator's picture
Add verifyToken field to verify evaluation results are produced by Hugging Face's automatic model evaluator
a24d394
|
raw
history blame
4.22 kB
metadata
language:
  - en
license: mit
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: roberta-base-qnli
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: GLUE QNLI
          type: glue
          args: qnli
        metrics:
          - type: accuracy
            value: 0.9245835621453414
            name: Accuracy
      - task:
          type: natural-language-inference
          name: Natural Language Inference
        dataset:
          name: glue
          type: glue
          config: qnli
          split: validation
        metrics:
          - type: accuracy
            value: 0.924400512538898
            name: Accuracy
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNmE1ZDY2YTAzNDFiNDdlMGFlNjk2OTkyNjVlMjgwNDJjMzBlMzkwMGZjOWNhZmY2OWFiZjVmOGZlZmU5OGUxNCIsInZlcnNpb24iOjF9._WT9aiP0YGqyVIBSqUt5E6MT6EjB8g2ol_xbl0d1RGLev-eYtACpvAex_qckbXcxqFSENjVqtGx24MqXvQZyAA
          - type: precision
            value: 0.9171997157071784
            name: Precision
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDg3ZGEwNTNmZjc2ZDNmZGY5NzgzMDRlMzBiODc0ZDY2NDE5NDRiYzNmYzg4YzQ5ZGM0MmI0ODA5NjQ3OTcxMiIsInZlcnNpb24iOjF9.CCCWPcZ3Ut8yjdal-62KxakOqVF7Vfj_A6etOxRV4pUa1WSpdOtK4BobR59tJKtfUw_l-h32EMMGQK0ZQBNCAA
          - type: recall
            value: 0.9348062296269467
            name: Recall
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDI0OTNkOWQ2NGYzYTQ5ZDcwNjk1NDJhYTMzNWQ2ZTkyZDcxZTA5OTFkZTNjZDBmMGZjMDQ4YmI2M2Y3ZWE2YSIsInZlcnNpb24iOjF9.gfgQq9FgLkOA4cBylEAVoJZLupqglQusjnpyd3MAk1zxLeFhYSQOiRmjjW2nPNV2cJM43bR4XPsqePWzWimzDA
          - type: auc
            value: 0.9744865501321541
            name: AUC
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODkyODMyZTRmYTIxYmFjNWM3MWI3ZjBhOWExNDkzMjc5MGM2NmNlYmE5NjI0NDU1NjlmYTJkZWNjMDA5ZjhkMiIsInZlcnNpb24iOjF9._CNFbnkR7n2CDTj2lIc6zGSWCFCEJ0V4sj7JZ44xL_cxILp5-m7Y-Dmi43Hk19FaBLfRzdmK9UD-BScNn_vsBw
          - type: f1
            value: 0.9259192825112107
            name: F1
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWVjN2E1YWNkMDgyMTk0Yjc2ZGFhYzJjNjFkY2VmNmU0NjNjZWQ3N2ZhYzgzNTg2N2FlNmY4YmMyYzJkNjFhOSIsInZlcnNpb24iOjF9.I1dkHU12MMeZerjCJ8JfBMyaR1fCEHvTZfpZN-hD2hTITjgkFcTFC_jFvydSwzKo7yX0ztA5ID3qqgW4qD7bAQ
          - type: loss
            value: 0.2990749478340149
            name: loss
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTM2ZjAwOWNjNWE3NjcwYTVmZTIyY2YzNGI3Mzk5ZjM0YjVmYjg3ODA4Mjc3NWViMDkxMDlmZWRiNTdiOGNjMCIsInZlcnNpb24iOjF9.ODKlAkIeFLR4XiugSVARPvDgVUf6bQas9gSm8r_Q8xzZISaVIOUKNs2Z7kq443LiBBulvBoPaapNPpwkBbMkAw

roberta-base-qnli

This model is a fine-tuned version of roberta-base on the GLUE QNLI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2992
  • Accuracy: 0.9246

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2986 1.0 6547 0.2215 0.9171
0.243 2.0 13094 0.2321 0.9173
0.2048 3.0 19641 0.2992 0.9246
0.1629 4.0 26188 0.3538 0.9220
0.1308 5.0 32735 0.3533 0.9209
0.0846 6.0 39282 0.4277 0.9229

Framework versions

  • Transformers 4.20.0.dev0
  • Pytorch 1.11.0+cu113
  • Datasets 2.1.0
  • Tokenizers 0.12.1