File size: 4,220 Bytes
12ede64 c2f58c0 12ede64 a24d394 12ede64 c2f58c0 12ede64 a24d394 c2f58c0 a24d394 e7669ea a24d394 e7669ea a24d394 e7669ea a24d394 e7669ea a24d394 e7669ea a24d394 e7669ea a24d394 e7669ea a24d394 e7669ea a24d394 e7669ea a24d394 e7669ea a24d394 e7669ea a24d394 e7669ea a24d394 e7669ea a24d394 12ede64 c2f58c0 12ede64 c2f58c0 12ede64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
---
language:
- en
license: mit
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: roberta-base-qnli
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: GLUE QNLI
type: glue
args: qnli
metrics:
- type: accuracy
value: 0.9245835621453414
name: Accuracy
- task:
type: natural-language-inference
name: Natural Language Inference
dataset:
name: glue
type: glue
config: qnli
split: validation
metrics:
- type: accuracy
value: 0.924400512538898
name: Accuracy
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNmE1ZDY2YTAzNDFiNDdlMGFlNjk2OTkyNjVlMjgwNDJjMzBlMzkwMGZjOWNhZmY2OWFiZjVmOGZlZmU5OGUxNCIsInZlcnNpb24iOjF9._WT9aiP0YGqyVIBSqUt5E6MT6EjB8g2ol_xbl0d1RGLev-eYtACpvAex_qckbXcxqFSENjVqtGx24MqXvQZyAA
- type: precision
value: 0.9171997157071784
name: Precision
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDg3ZGEwNTNmZjc2ZDNmZGY5NzgzMDRlMzBiODc0ZDY2NDE5NDRiYzNmYzg4YzQ5ZGM0MmI0ODA5NjQ3OTcxMiIsInZlcnNpb24iOjF9.CCCWPcZ3Ut8yjdal-62KxakOqVF7Vfj_A6etOxRV4pUa1WSpdOtK4BobR59tJKtfUw_l-h32EMMGQK0ZQBNCAA
- type: recall
value: 0.9348062296269467
name: Recall
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDI0OTNkOWQ2NGYzYTQ5ZDcwNjk1NDJhYTMzNWQ2ZTkyZDcxZTA5OTFkZTNjZDBmMGZjMDQ4YmI2M2Y3ZWE2YSIsInZlcnNpb24iOjF9.gfgQq9FgLkOA4cBylEAVoJZLupqglQusjnpyd3MAk1zxLeFhYSQOiRmjjW2nPNV2cJM43bR4XPsqePWzWimzDA
- type: auc
value: 0.9744865501321541
name: AUC
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODkyODMyZTRmYTIxYmFjNWM3MWI3ZjBhOWExNDkzMjc5MGM2NmNlYmE5NjI0NDU1NjlmYTJkZWNjMDA5ZjhkMiIsInZlcnNpb24iOjF9._CNFbnkR7n2CDTj2lIc6zGSWCFCEJ0V4sj7JZ44xL_cxILp5-m7Y-Dmi43Hk19FaBLfRzdmK9UD-BScNn_vsBw
- type: f1
value: 0.9259192825112107
name: F1
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWVjN2E1YWNkMDgyMTk0Yjc2ZGFhYzJjNjFkY2VmNmU0NjNjZWQ3N2ZhYzgzNTg2N2FlNmY4YmMyYzJkNjFhOSIsInZlcnNpb24iOjF9.I1dkHU12MMeZerjCJ8JfBMyaR1fCEHvTZfpZN-hD2hTITjgkFcTFC_jFvydSwzKo7yX0ztA5ID3qqgW4qD7bAQ
- type: loss
value: 0.2990749478340149
name: loss
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTM2ZjAwOWNjNWE3NjcwYTVmZTIyY2YzNGI3Mzk5ZjM0YjVmYjg3ODA4Mjc3NWViMDkxMDlmZWRiNTdiOGNjMCIsInZlcnNpb24iOjF9.ODKlAkIeFLR4XiugSVARPvDgVUf6bQas9gSm8r_Q8xzZISaVIOUKNs2Z7kq443LiBBulvBoPaapNPpwkBbMkAw
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-qnli
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the GLUE QNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2992
- Accuracy: 0.9246
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.2986 | 1.0 | 6547 | 0.2215 | 0.9171 |
| 0.243 | 2.0 | 13094 | 0.2321 | 0.9173 |
| 0.2048 | 3.0 | 19641 | 0.2992 | 0.9246 |
| 0.1629 | 4.0 | 26188 | 0.3538 | 0.9220 |
| 0.1308 | 5.0 | 32735 | 0.3533 | 0.9209 |
| 0.0846 | 6.0 | 39282 | 0.4277 | 0.9229 |
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1
|