|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- glue |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: bert-base-uncased-mnli |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: GLUE MNLI |
|
type: glue |
|
args: mnli |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8500813669650122 |
|
- task: |
|
type: natural-language-inference |
|
name: Natural Language Inference |
|
dataset: |
|
name: glue |
|
type: glue |
|
config: mnli_matched |
|
split: validation |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8467651553744269 |
|
verified: true |
|
- name: Precision Macro |
|
type: precision |
|
value: 0.8460148987014974 |
|
verified: true |
|
- name: Precision Micro |
|
type: precision |
|
value: 0.8467651553744269 |
|
verified: true |
|
- name: Precision Weighted |
|
type: precision |
|
value: 0.8475656756385261 |
|
verified: true |
|
- name: Recall Macro |
|
type: recall |
|
value: 0.8463172075485045 |
|
verified: true |
|
- name: Recall Micro |
|
type: recall |
|
value: 0.8467651553744269 |
|
verified: true |
|
- name: Recall Weighted |
|
type: recall |
|
value: 0.8467651553744269 |
|
verified: true |
|
- name: F1 Macro |
|
type: f1 |
|
value: 0.8459654597797398 |
|
verified: true |
|
- name: F1 Micro |
|
type: f1 |
|
value: 0.8467651553744269 |
|
verified: true |
|
- name: F1 Weighted |
|
type: f1 |
|
value: 0.8469586362613581 |
|
verified: true |
|
- name: loss |
|
type: loss |
|
value: 0.42515239119529724 |
|
verified: true |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-base-uncased-mnli |
|
|
|
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE MNLI dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4056 |
|
- Accuracy: 0.8501 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:| |
|
| 0.4526 | 1.0 | 12272 | 0.4244 | 0.8388 | |
|
| 0.3344 | 2.0 | 24544 | 0.4252 | 0.8469 | |
|
| 0.2307 | 3.0 | 36816 | 0.4974 | 0.8445 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.20.0.dev0 |
|
- Pytorch 1.11.0+cu113 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.12.1 |
|
|