metadata
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: bert-base-uncased-mnli
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE MNLI
type: glue
args: mnli
metrics:
- name: Accuracy
type: accuracy
value: 0.8500813669650122
- task:
type: natural-language-inference
name: Natural Language Inference
dataset:
name: glue
type: glue
config: mnli_matched
split: validation
metrics:
- name: Accuracy
type: accuracy
value: 0.8467651553744269
verified: true
- name: Precision Macro
type: precision
value: 0.8460148987014974
verified: true
- name: Precision Micro
type: precision
value: 0.8467651553744269
verified: true
- name: Precision Weighted
type: precision
value: 0.8475656756385261
verified: true
- name: Recall Macro
type: recall
value: 0.8463172075485045
verified: true
- name: Recall Micro
type: recall
value: 0.8467651553744269
verified: true
- name: Recall Weighted
type: recall
value: 0.8467651553744269
verified: true
- name: F1 Macro
type: f1
value: 0.8459654597797398
verified: true
- name: F1 Micro
type: f1
value: 0.8467651553744269
verified: true
- name: F1 Weighted
type: f1
value: 0.8469586362613581
verified: true
- name: loss
type: loss
value: 0.42515239119529724
verified: true
bert-base-uncased-mnli
This model is a fine-tuned version of bert-base-uncased on the GLUE MNLI dataset. It achieves the following results on the evaluation set:
- Loss: 0.4056
- Accuracy: 0.8501
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.4526 | 1.0 | 12272 | 0.4244 | 0.8388 |
0.3344 | 2.0 | 24544 | 0.4252 | 0.8469 |
0.2307 | 3.0 | 36816 | 0.4974 | 0.8445 |
Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1