JCAI2000's picture
End of training
1e5d019
|
raw
history blame
7.64 kB
metadata
license: other
base_model: nvidia/mit-b0
tags:
  - vision
  - image-segmentation
  - generated_from_trainer
model-index:
  - name: segformer-b0-finetuned-100by100PNG-50epochs-attempt2-removeNAN
    results: []

segformer-b0-finetuned-100by100PNG-50epochs-attempt2-removeNAN

This model is a fine-tuned version of nvidia/mit-b0 on the JCAI2000/100By100BranchPNG dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1268
  • Mean Iou: 0.8754
  • Mean Accuracy: 1.0
  • Overall Accuracy: 1.0
  • Accuracy Branch: 1.0
  • Iou Branch: 0.8754

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Branch Iou Branch
0.4487 1.05 20 0.6365 0.8754 1.0 1.0 1.0 0.8754
0.466 2.11 40 0.5024 0.8754 1.0 1.0 1.0 0.8754
0.4431 3.16 60 0.4013 0.8754 1.0 1.0 1.0 0.8754
0.3967 4.21 80 0.3739 0.8754 1.0 1.0 1.0 0.8754
0.2476 5.26 100 0.3191 0.8754 1.0 1.0 1.0 0.8754
0.3577 6.32 120 0.3235 0.8754 1.0 1.0 1.0 0.8754
0.2501 7.37 140 0.2839 0.8754 1.0 1.0 1.0 0.8754
0.3382 8.42 160 0.2674 0.8754 1.0 1.0 1.0 0.8754
0.3191 9.47 180 0.2512 0.8754 1.0 1.0 1.0 0.8754
0.1632 10.53 200 0.2197 0.8754 1.0 1.0 1.0 0.8754
0.1888 11.58 220 0.2095 0.8754 1.0 1.0 1.0 0.8754
0.1443 12.63 240 0.1975 0.8754 1.0 1.0 1.0 0.8754
0.1348 13.68 260 0.1836 0.8754 1.0 1.0 1.0 0.8754
0.1772 14.74 280 0.1742 0.8754 1.0 1.0 1.0 0.8754
0.1524 15.79 300 0.1893 0.8754 1.0 1.0 1.0 0.8754
0.1135 16.84 320 0.1710 0.8754 1.0 1.0 1.0 0.8754
0.1676 17.89 340 0.1789 0.8754 1.0 1.0 1.0 0.8754
0.131 18.95 360 0.1604 0.8754 1.0 1.0 1.0 0.8754
0.1693 20.0 380 0.1531 0.8754 1.0 1.0 1.0 0.8754
0.1031 21.05 400 0.1572 0.8754 1.0 1.0 1.0 0.8754
0.1432 22.11 420 0.1571 0.8754 1.0 1.0 1.0 0.8754
0.1711 23.16 440 0.1542 0.8754 1.0 1.0 1.0 0.8754
0.1287 24.21 460 0.1469 0.8754 1.0 1.0 1.0 0.8754
0.1228 25.26 480 0.1493 0.8754 1.0 1.0 1.0 0.8754
0.1316 26.32 500 0.1568 0.8754 1.0 1.0 1.0 0.8754
0.0737 27.37 520 0.1455 0.8754 1.0 1.0 1.0 0.8754
0.0914 28.42 540 0.1454 0.8754 1.0 1.0 1.0 0.8754
0.1122 29.47 560 0.1467 0.8754 1.0 1.0 1.0 0.8754
0.1482 30.53 580 0.1500 0.8754 1.0 1.0 1.0 0.8754
0.1006 31.58 600 0.1351 0.8754 1.0 1.0 1.0 0.8754
0.1069 32.63 620 0.1513 0.8754 1.0 1.0 1.0 0.8754
0.0985 33.68 640 0.1417 0.8754 1.0 1.0 1.0 0.8754
0.0794 34.74 660 0.1364 0.8754 1.0 1.0 1.0 0.8754
0.1065 35.79 680 0.1343 0.8754 1.0 1.0 1.0 0.8754
0.0993 36.84 700 0.1346 0.8754 1.0 1.0 1.0 0.8754
0.0904 37.89 720 0.1430 0.8754 1.0 1.0 1.0 0.8754
0.1159 38.95 740 0.1342 0.8754 1.0 1.0 1.0 0.8754
0.1787 40.0 760 0.1343 0.8754 1.0 1.0 1.0 0.8754
0.0621 41.05 780 0.1363 0.8754 1.0 1.0 1.0 0.8754
0.0844 42.11 800 0.1301 0.8754 1.0 1.0 1.0 0.8754
0.0919 43.16 820 0.1318 0.8754 1.0 1.0 1.0 0.8754
0.0728 44.21 840 0.1348 0.8754 1.0 1.0 1.0 0.8754
0.1073 45.26 860 0.1391 0.8754 1.0 1.0 1.0 0.8754
0.0563 46.32 880 0.1310 0.8754 1.0 1.0 1.0 0.8754
0.0827 47.37 900 0.1303 0.8754 1.0 1.0 1.0 0.8754
0.0633 48.42 920 0.1304 0.8754 1.0 1.0 1.0 0.8754
0.1452 49.47 940 0.1268 0.8754 1.0 1.0 1.0 0.8754

Framework versions

  • Transformers 4.33.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.13.3