JCAI2000 commited on
Commit
1e5d019
1 Parent(s): 837d4ca

End of training

Browse files
Files changed (4) hide show
  1. README.md +110 -0
  2. config.json +76 -0
  3. pytorch_model.bin +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: nvidia/mit-b0
4
+ tags:
5
+ - vision
6
+ - image-segmentation
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: segformer-b0-finetuned-100by100PNG-50epochs-attempt2-removeNAN
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # segformer-b0-finetuned-100by100PNG-50epochs-attempt2-removeNAN
17
+
18
+ This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the JCAI2000/100By100BranchPNG dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.1268
21
+ - Mean Iou: 0.8754
22
+ - Mean Accuracy: 1.0
23
+ - Overall Accuracy: 1.0
24
+ - Accuracy Branch: 1.0
25
+ - Iou Branch: 0.8754
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 6e-05
45
+ - train_batch_size: 2
46
+ - eval_batch_size: 2
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 50
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Branch | Iou Branch |
55
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:---------------:|:----------:|
56
+ | 0.4487 | 1.05 | 20 | 0.6365 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
57
+ | 0.466 | 2.11 | 40 | 0.5024 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
58
+ | 0.4431 | 3.16 | 60 | 0.4013 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
59
+ | 0.3967 | 4.21 | 80 | 0.3739 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
60
+ | 0.2476 | 5.26 | 100 | 0.3191 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
61
+ | 0.3577 | 6.32 | 120 | 0.3235 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
62
+ | 0.2501 | 7.37 | 140 | 0.2839 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
63
+ | 0.3382 | 8.42 | 160 | 0.2674 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
64
+ | 0.3191 | 9.47 | 180 | 0.2512 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
65
+ | 0.1632 | 10.53 | 200 | 0.2197 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
66
+ | 0.1888 | 11.58 | 220 | 0.2095 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
67
+ | 0.1443 | 12.63 | 240 | 0.1975 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
68
+ | 0.1348 | 13.68 | 260 | 0.1836 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
69
+ | 0.1772 | 14.74 | 280 | 0.1742 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
70
+ | 0.1524 | 15.79 | 300 | 0.1893 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
71
+ | 0.1135 | 16.84 | 320 | 0.1710 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
72
+ | 0.1676 | 17.89 | 340 | 0.1789 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
73
+ | 0.131 | 18.95 | 360 | 0.1604 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
74
+ | 0.1693 | 20.0 | 380 | 0.1531 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
75
+ | 0.1031 | 21.05 | 400 | 0.1572 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
76
+ | 0.1432 | 22.11 | 420 | 0.1571 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
77
+ | 0.1711 | 23.16 | 440 | 0.1542 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
78
+ | 0.1287 | 24.21 | 460 | 0.1469 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
79
+ | 0.1228 | 25.26 | 480 | 0.1493 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
80
+ | 0.1316 | 26.32 | 500 | 0.1568 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
81
+ | 0.0737 | 27.37 | 520 | 0.1455 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
82
+ | 0.0914 | 28.42 | 540 | 0.1454 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
83
+ | 0.1122 | 29.47 | 560 | 0.1467 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
84
+ | 0.1482 | 30.53 | 580 | 0.1500 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
85
+ | 0.1006 | 31.58 | 600 | 0.1351 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
86
+ | 0.1069 | 32.63 | 620 | 0.1513 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
87
+ | 0.0985 | 33.68 | 640 | 0.1417 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
88
+ | 0.0794 | 34.74 | 660 | 0.1364 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
89
+ | 0.1065 | 35.79 | 680 | 0.1343 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
90
+ | 0.0993 | 36.84 | 700 | 0.1346 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
91
+ | 0.0904 | 37.89 | 720 | 0.1430 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
92
+ | 0.1159 | 38.95 | 740 | 0.1342 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
93
+ | 0.1787 | 40.0 | 760 | 0.1343 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
94
+ | 0.0621 | 41.05 | 780 | 0.1363 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
95
+ | 0.0844 | 42.11 | 800 | 0.1301 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
96
+ | 0.0919 | 43.16 | 820 | 0.1318 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
97
+ | 0.0728 | 44.21 | 840 | 0.1348 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
98
+ | 0.1073 | 45.26 | 860 | 0.1391 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
99
+ | 0.0563 | 46.32 | 880 | 0.1310 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
100
+ | 0.0827 | 47.37 | 900 | 0.1303 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
101
+ | 0.0633 | 48.42 | 920 | 0.1304 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
102
+ | 0.1452 | 49.47 | 940 | 0.1268 | 0.8754 | 1.0 | 1.0 | 1.0 | 0.8754 |
103
+
104
+
105
+ ### Framework versions
106
+
107
+ - Transformers 4.33.0
108
+ - Pytorch 2.0.1+cu117
109
+ - Datasets 2.14.4
110
+ - Tokenizers 0.13.3
config.json ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nvidia/mit-b0",
3
+ "architectures": [
4
+ "SegformerForSemanticSegmentation"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "classifier_dropout_prob": 0.1,
8
+ "decoder_hidden_size": 256,
9
+ "depths": [
10
+ 2,
11
+ 2,
12
+ 2,
13
+ 2
14
+ ],
15
+ "downsampling_rates": [
16
+ 1,
17
+ 4,
18
+ 8,
19
+ 16
20
+ ],
21
+ "drop_path_rate": 0.1,
22
+ "hidden_act": "gelu",
23
+ "hidden_dropout_prob": 0.0,
24
+ "hidden_sizes": [
25
+ 32,
26
+ 64,
27
+ 160,
28
+ 256
29
+ ],
30
+ "id2label": {
31
+ "1": "branch"
32
+ },
33
+ "image_size": 224,
34
+ "initializer_range": 0.02,
35
+ "label2id": {
36
+ "branch": 1
37
+ },
38
+ "layer_norm_eps": 1e-06,
39
+ "mlp_ratios": [
40
+ 4,
41
+ 4,
42
+ 4,
43
+ 4
44
+ ],
45
+ "model_type": "segformer",
46
+ "num_attention_heads": [
47
+ 1,
48
+ 2,
49
+ 5,
50
+ 8
51
+ ],
52
+ "num_channels": 3,
53
+ "num_encoder_blocks": 4,
54
+ "patch_sizes": [
55
+ 7,
56
+ 3,
57
+ 3,
58
+ 3
59
+ ],
60
+ "reshape_last_stage": true,
61
+ "semantic_loss_ignore_index": 255,
62
+ "sr_ratios": [
63
+ 8,
64
+ 4,
65
+ 2,
66
+ 1
67
+ ],
68
+ "strides": [
69
+ 4,
70
+ 2,
71
+ 2,
72
+ 2
73
+ ],
74
+ "torch_dtype": "float32",
75
+ "transformers_version": "4.33.0"
76
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b596e9d5420ed8a283fda488524929da420376c1a8bd6938e1baa9f714112960
3
+ size 14930765
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ba8f7866cb552c4951c929bf2cae249cc2d6b2e938db99002216df114ac9153
3
+ size 4155