Izarel's picture
update model card README.md
c8d8dae
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - recall
  - precision
  - f1
model-index:
  - name: distilbert-base-uncased_fine_tuned_title
    results: []

distilbert-base-uncased_fine_tuned_title

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2615
  • Accuracy: {'accuracy': 0.877634820695319}
  • Recall: {'recall': 0.8474786132372805}
  • Precision: {'precision': 0.8953502200023784}
  • F1: {'f1': 0.8707569536806801}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy Recall Precision F1
0.3093 1.0 2284 0.3021 {'accuracy': 0.8779085683000274} {'recall': 0.8560333183250788} {'precision': 0.8888499298737728} {'f1': 0.8721330275229358}
0.2459 2.0 4568 0.2909 {'accuracy': 0.8894059676977827} {'recall': 0.8513057181449797} {'precision': 0.9153957879448076} {'f1': 0.8821882654846612}
0.1696 3.0 6852 0.3259 {'accuracy': 0.8808102929099371} {'recall': 0.8595227375056281} {'precision': 0.8915353181552831} {'f1': 0.875236403232277}
0.1179 4.0 9136 0.4946 {'accuracy': 0.8729811114152751} {'recall': 0.8610986042323278} {'precision': 0.8756868131868132} {'f1': 0.8683314415437005}
0.0775 5.0 11420 0.6547 {'accuracy': 0.8708458800985491} {'recall': 0.8041422782530392} {'precision': 0.9202627850057967} {'f1': 0.8582927854868745}
0.0522 6.0 13704 0.6699 {'accuracy': 0.8768683274021353} {'recall': 0.8325078793336335} {'precision': 0.9067058967757754} {'f1': 0.8680241769849187}
0.0406 7.0 15988 0.8149 {'accuracy': 0.8739118532712838} {'recall': 0.8330706888788834} {'precision': 0.9002554433767181} {'f1': 0.8653610055539316}
0.0298 8.0 18272 0.8906 {'accuracy': 0.8753353408157679} {'recall': 0.8421882035119316} {'precision': 0.8952973555103506} {'f1': 0.8679310944840787}
0.0217 9.0 20556 1.0192 {'accuracy': 0.8754448398576512} {'recall': 0.8624493471409275} {'precision': 0.8791738382099827} {'f1': 0.8707312915506562}
0.017 10.0 22840 1.0550 {'accuracy': 0.8758828360251848} {'recall': 0.8556956325979289} {'precision': 0.8852917200419238} {'f1': 0.8702421155056951}
0.0139 11.0 25124 1.0873 {'accuracy': 0.8728716123733917} {'recall': 0.8582845565060784} {'precision': 0.8776473296500921} {'f1': 0.8678579558388345}
0.0114 12.0 27408 1.1506 {'accuracy': 0.8716123733917328} {'recall': 0.8628995947771274} {'precision': 0.8718298646650745} {'f1': 0.8673417435085139}
0.0061 13.0 29692 1.2574 {'accuracy': 0.8696961401587736} {'recall': 0.874943719045475} {'precision': 0.8596549435965495} {'f1': 0.8672319535869686}
0.0035 14.0 31976 1.2490 {'accuracy': 0.8784560635094443} {'recall': 0.85006753714543} {'precision': 0.8947867298578199} {'f1': 0.8718540752713001}
0.0028 15.0 34260 1.2615 {'accuracy': 0.877634820695319} {'recall': 0.8474786132372805} {'precision': 0.8953502200023784} {'f1': 0.8707569536806801}

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1