Izarel commited on
Commit
c8d8dae
1 Parent(s): c144669

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - recall
8
+ - precision
9
+ - f1
10
+ model-index:
11
+ - name: distilbert-base-uncased_fine_tuned_title
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # distilbert-base-uncased_fine_tuned_title
19
+
20
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 1.2615
23
+ - Accuracy: {'accuracy': 0.877634820695319}
24
+ - Recall: {'recall': 0.8474786132372805}
25
+ - Precision: {'precision': 0.8953502200023784}
26
+ - F1: {'f1': 0.8707569536806801}
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 5e-05
46
+ - train_batch_size: 32
47
+ - eval_batch_size: 32
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - lr_scheduler_warmup_steps: 1000
52
+ - num_epochs: 15
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 |
57
+ |:-------------:|:-----:|:-----:|:---------------:|:--------------------------------:|:------------------------------:|:---------------------------------:|:--------------------------:|
58
+ | 0.3093 | 1.0 | 2284 | 0.3021 | {'accuracy': 0.8779085683000274} | {'recall': 0.8560333183250788} | {'precision': 0.8888499298737728} | {'f1': 0.8721330275229358} |
59
+ | 0.2459 | 2.0 | 4568 | 0.2909 | {'accuracy': 0.8894059676977827} | {'recall': 0.8513057181449797} | {'precision': 0.9153957879448076} | {'f1': 0.8821882654846612} |
60
+ | 0.1696 | 3.0 | 6852 | 0.3259 | {'accuracy': 0.8808102929099371} | {'recall': 0.8595227375056281} | {'precision': 0.8915353181552831} | {'f1': 0.875236403232277} |
61
+ | 0.1179 | 4.0 | 9136 | 0.4946 | {'accuracy': 0.8729811114152751} | {'recall': 0.8610986042323278} | {'precision': 0.8756868131868132} | {'f1': 0.8683314415437005} |
62
+ | 0.0775 | 5.0 | 11420 | 0.6547 | {'accuracy': 0.8708458800985491} | {'recall': 0.8041422782530392} | {'precision': 0.9202627850057967} | {'f1': 0.8582927854868745} |
63
+ | 0.0522 | 6.0 | 13704 | 0.6699 | {'accuracy': 0.8768683274021353} | {'recall': 0.8325078793336335} | {'precision': 0.9067058967757754} | {'f1': 0.8680241769849187} |
64
+ | 0.0406 | 7.0 | 15988 | 0.8149 | {'accuracy': 0.8739118532712838} | {'recall': 0.8330706888788834} | {'precision': 0.9002554433767181} | {'f1': 0.8653610055539316} |
65
+ | 0.0298 | 8.0 | 18272 | 0.8906 | {'accuracy': 0.8753353408157679} | {'recall': 0.8421882035119316} | {'precision': 0.8952973555103506} | {'f1': 0.8679310944840787} |
66
+ | 0.0217 | 9.0 | 20556 | 1.0192 | {'accuracy': 0.8754448398576512} | {'recall': 0.8624493471409275} | {'precision': 0.8791738382099827} | {'f1': 0.8707312915506562} |
67
+ | 0.017 | 10.0 | 22840 | 1.0550 | {'accuracy': 0.8758828360251848} | {'recall': 0.8556956325979289} | {'precision': 0.8852917200419238} | {'f1': 0.8702421155056951} |
68
+ | 0.0139 | 11.0 | 25124 | 1.0873 | {'accuracy': 0.8728716123733917} | {'recall': 0.8582845565060784} | {'precision': 0.8776473296500921} | {'f1': 0.8678579558388345} |
69
+ | 0.0114 | 12.0 | 27408 | 1.1506 | {'accuracy': 0.8716123733917328} | {'recall': 0.8628995947771274} | {'precision': 0.8718298646650745} | {'f1': 0.8673417435085139} |
70
+ | 0.0061 | 13.0 | 29692 | 1.2574 | {'accuracy': 0.8696961401587736} | {'recall': 0.874943719045475} | {'precision': 0.8596549435965495} | {'f1': 0.8672319535869686} |
71
+ | 0.0035 | 14.0 | 31976 | 1.2490 | {'accuracy': 0.8784560635094443} | {'recall': 0.85006753714543} | {'precision': 0.8947867298578199} | {'f1': 0.8718540752713001} |
72
+ | 0.0028 | 15.0 | 34260 | 1.2615 | {'accuracy': 0.877634820695319} | {'recall': 0.8474786132372805} | {'precision': 0.8953502200023784} | {'f1': 0.8707569536806801} |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.21.0
78
+ - Pytorch 1.12.0+cu113
79
+ - Datasets 2.4.0
80
+ - Tokenizers 0.12.1