metadata
license: other
base_model: nvidia/mit-b0
tags:
- generated_from_trainer
datasets:
- scene_parse_150
model-index:
- name: segformer-b0-scene-parse-150
results: []
segformer-b0-scene-parse-150
This model is a fine-tuned version of nvidia/mit-b0 on the scene_parse_150 dataset. It achieves the following results on the evaluation set:
- Loss: 3.6391
- Mean Iou: 0.0583
- Mean Accuracy: 0.1172
- Overall Accuracy: 0.4492
- Per Category Iou: [0.44041294308583534, nan, nan, 0.6666970930892689, nan, 0.33468836772838806, nan, nan, 0.010483214113553378, nan, 0.09776380089668009, nan, nan, nan, 0.27788378028383004, 0.0, nan, 0.0, 0.0003410360439818898, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.10667274078691827, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.07423709941194892, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.02291795825583798, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.12350896966281581, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan]
- Per Category Accuracy: [0.6424969817484554, nan, nan, 0.8805785816574676, nan, 0.46181318389743264, nan, nan, 0.01073188993573345, nan, 0.10568203217142234, nan, nan, nan, 0.6834847599119304, 0.0, nan, nan, 0.00041847041847041847, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.23207169236547248, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.551230945262614, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.03717359970502464, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.1452108041255328, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan]
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
---|---|---|---|---|---|---|---|---|
3.747 | 1.0 | 20 | 3.6391 | 0.0583 | 0.1172 | 0.4492 | [0.44041294308583534, nan, nan, 0.6666970930892689, nan, 0.33468836772838806, nan, nan, 0.010483214113553378, nan, 0.09776380089668009, nan, nan, nan, 0.27788378028383004, 0.0, nan, 0.0, 0.0003410360439818898, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.10667274078691827, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.07423709941194892, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.02291795825583798, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.12350896966281581, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan] | [0.6424969817484554, nan, nan, 0.8805785816574676, nan, 0.46181318389743264, nan, nan, 0.01073188993573345, nan, 0.10568203217142234, nan, nan, nan, 0.6834847599119304, 0.0, nan, nan, 0.00041847041847041847, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.23207169236547248, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.551230945262614, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.03717359970502464, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.1452108041255328, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan] |
Framework versions
- Transformers 4.41.2
- Pytorch 2.2.0
- Datasets 2.20.0
- Tokenizers 0.19.1