IslemTouati commited on
Commit
2806416
1 Parent(s): bac8ae8

End of training

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: nvidia/mit-b0
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - scene_parse_150
8
+ model-index:
9
+ - name: segformer-b0-scene-parse-150
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # segformer-b0-scene-parse-150
17
+
18
+ This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 3.6391
21
+ - Mean Iou: 0.0583
22
+ - Mean Accuracy: 0.1172
23
+ - Overall Accuracy: 0.4492
24
+ - Per Category Iou: [0.44041294308583534, nan, nan, 0.6666970930892689, nan, 0.33468836772838806, nan, nan, 0.010483214113553378, nan, 0.09776380089668009, nan, nan, nan, 0.27788378028383004, 0.0, nan, 0.0, 0.0003410360439818898, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.10667274078691827, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.07423709941194892, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.02291795825583798, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.12350896966281581, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan]
25
+ - Per Category Accuracy: [0.6424969817484554, nan, nan, 0.8805785816574676, nan, 0.46181318389743264, nan, nan, 0.01073188993573345, nan, 0.10568203217142234, nan, nan, nan, 0.6834847599119304, 0.0, nan, nan, 0.00041847041847041847, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.23207169236547248, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.551230945262614, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.03717359970502464, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.1452108041255328, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan]
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 6e-05
45
+ - train_batch_size: 2
46
+ - eval_batch_size: 2
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 1
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
55
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
56
+ | 3.747 | 1.0 | 20 | 3.6391 | 0.0583 | 0.1172 | 0.4492 | [0.44041294308583534, nan, nan, 0.6666970930892689, nan, 0.33468836772838806, nan, nan, 0.010483214113553378, nan, 0.09776380089668009, nan, nan, nan, 0.27788378028383004, 0.0, nan, 0.0, 0.0003410360439818898, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, 0.10667274078691827, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.07423709941194892, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.02291795825583798, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.12350896966281581, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan] | [0.6424969817484554, nan, nan, 0.8805785816574676, nan, 0.46181318389743264, nan, nan, 0.01073188993573345, nan, 0.10568203217142234, nan, nan, nan, 0.6834847599119304, 0.0, nan, nan, 0.00041847041847041847, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.23207169236547248, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.551230945262614, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.03717359970502464, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, 0.1452108041255328, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan] |
57
+
58
+
59
+ ### Framework versions
60
+
61
+ - Transformers 4.41.2
62
+ - Pytorch 2.2.0
63
+ - Datasets 2.20.0
64
+ - Tokenizers 0.19.1