flan-log-sage / README.md
IrwinD's picture
Update README.md
cbd3919 verified
metadata
license: apache-2.0
base_model: google/flan-t5-base
tags:
  - generated_from_trainer
datasets:
  - hdfs_log_summary_dataset
metrics:
  - rouge
model-index:
  - name: flan-log-sage
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: hdfs_log_summary_dataset
          type: hdfs_log_summary_dataset
          config: default
          split: train
          args: default
        metrics:
          - name: Rouge1
            type: rouge
            value: 0.4709
pipeline_tag: summarization

flan-log-sage

This model is a fine-tuned version of google/flan-t5-base on the hdfs_log_summary_dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5181
  • Rouge1: 0.4709
  • Rouge2: 0.1615
  • Rougel: 0.3748
  • Rougelsum: 0.3905
  • Gen Len: 19.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 12 2.9597 0.1985 0.0098 0.1629 0.1658 18.8
No log 2.0 24 2.5389 0.3028 0.0271 0.2401 0.2492 17.8
No log 3.0 36 2.2506 0.3349 0.0688 0.2549 0.2789 19.0
No log 4.0 48 2.0524 0.4046 0.0982 0.3249 0.3409 19.0
No log 5.0 60 1.9082 0.4479 0.1438 0.3449 0.3617 19.0
No log 6.0 72 1.8325 0.4564 0.1577 0.3402 0.3562 18.8
No log 7.0 84 1.7565 0.4441 0.1456 0.3335 0.351 19.0
No log 8.0 96 1.7091 0.4691 0.1732 0.3486 0.3667 19.0
No log 9.0 108 1.6683 0.4847 0.1645 0.3589 0.3667 19.0
No log 10.0 120 1.5987 0.4847 0.1727 0.3667 0.3667 19.0
No log 11.0 132 1.5606 0.4684 0.1935 0.3746 0.3751 19.0
No log 12.0 144 1.5245 0.4749 0.193 0.3817 0.3894 19.0
No log 13.0 156 1.4859 0.5163 0.2289 0.3802 0.3879 19.0
No log 14.0 168 1.4950 0.4404 0.1522 0.3474 0.3474 19.0
No log 15.0 180 1.4552 0.4609 0.1865 0.3573 0.362 19.0
No log 16.0 192 1.4501 0.4521 0.1685 0.342 0.3423 19.0
No log 17.0 204 1.3955 0.4763 0.1769 0.3788 0.379 19.0
No log 18.0 216 1.4192 0.4602 0.199 0.3168 0.3178 19.0
No log 19.0 228 1.3750 0.411 0.1258 0.3168 0.3269 19.0
No log 20.0 240 1.3660 0.5038 0.2293 0.3638 0.3649 19.0
No log 21.0 252 1.3610 0.4508 0.1364 0.3319 0.3397 19.0
No log 22.0 264 1.3437 0.4495 0.1225 0.3217 0.3239 19.0
No log 23.0 276 1.3394 0.4495 0.1225 0.3217 0.3239 19.0
No log 24.0 288 1.3716 0.4499 0.1459 0.3562 0.3727 19.0
No log 25.0 300 1.3673 0.4427 0.1585 0.3704 0.3784 19.0
No log 26.0 312 1.3225 0.4427 0.1585 0.3704 0.3784 19.0
No log 27.0 324 1.3041 0.4308 0.1457 0.3426 0.352 19.0
No log 28.0 336 1.3350 0.4508 0.1459 0.3562 0.3647 19.0
No log 29.0 348 1.3438 0.4243 0.1256 0.3364 0.3439 19.0
No log 30.0 360 1.3332 0.4302 0.1262 0.3394 0.3474 19.0
No log 31.0 372 1.3551 0.4647 0.1385 0.3595 0.3595 19.0
No log 32.0 384 1.3822 0.4647 0.1385 0.3595 0.3595 19.0
No log 33.0 396 1.3978 0.4647 0.1385 0.3595 0.3595 19.0
No log 34.0 408 1.4044 0.4469 0.1331 0.3518 0.3518 19.0
No log 35.0 420 1.3828 0.4614 0.1369 0.357 0.3727 19.0
No log 36.0 432 1.3797 0.4551 0.1369 0.357 0.3727 19.0
No log 37.0 444 1.3528 0.4493 0.124 0.3515 0.3669 19.0
No log 38.0 456 1.3716 0.4493 0.124 0.3515 0.3669 19.0
No log 39.0 468 1.4217 0.4429 0.124 0.3449 0.3606 19.0
No log 40.0 480 1.4128 0.4429 0.124 0.3449 0.3606 19.0
No log 41.0 492 1.3495 0.4429 0.124 0.3449 0.3606 19.0
1.33 42.0 504 1.3608 0.4397 0.1117 0.348 0.3636 19.0
1.33 43.0 516 1.4052 0.4605 0.1246 0.3688 0.3845 19.0
1.33 44.0 528 1.3969 0.4605 0.1435 0.3688 0.3845 19.0
1.33 45.0 540 1.3768 0.4551 0.1369 0.357 0.3727 19.0
1.33 46.0 552 1.3903 0.4429 0.124 0.3449 0.3606 19.0
1.33 47.0 564 1.3829 0.4458 0.1395 0.3547 0.3628 19.0
1.33 48.0 576 1.3972 0.4551 0.1369 0.357 0.3727 19.0
1.33 49.0 588 1.4015 0.4429 0.124 0.3449 0.3606 19.0
1.33 50.0 600 1.3791 0.4493 0.124 0.3515 0.3669 19.0
1.33 51.0 612 1.4205 0.4493 0.124 0.3515 0.3669 19.0
1.33 52.0 624 1.4269 0.4493 0.124 0.3515 0.3669 19.0
1.33 53.0 636 1.3988 0.4493 0.124 0.3515 0.3669 19.0
1.33 54.0 648 1.4126 0.4493 0.124 0.3515 0.3669 19.0
1.33 55.0 660 1.4178 0.4429 0.124 0.3449 0.3606 19.0
1.33 56.0 672 1.4674 0.4332 0.1189 0.3408 0.3565 19.0
1.33 57.0 684 1.4871 0.4543 0.1403 0.3546 0.3703 19.0
1.33 58.0 696 1.4709 0.4547 0.1365 0.3567 0.3723 19.0
1.33 59.0 708 1.4891 0.4493 0.124 0.3515 0.3669 19.0
1.33 60.0 720 1.5033 0.4398 0.1109 0.3289 0.3446 19.0
1.33 61.0 732 1.4830 0.4398 0.1109 0.3289 0.3446 19.0
1.33 62.0 744 1.4642 0.4246 0.1042 0.335 0.3507 19.0
1.33 63.0 756 1.4480 0.4246 0.1042 0.335 0.3507 19.0
1.33 64.0 768 1.4312 0.4493 0.124 0.3515 0.3669 19.0
1.33 65.0 780 1.4761 0.4378 0.1247 0.3458 0.3615 19.0
1.33 66.0 792 1.4705 0.4378 0.1247 0.3458 0.3615 19.0
1.33 67.0 804 1.4665 0.4493 0.124 0.3515 0.3669 19.0
1.33 68.0 816 1.4700 0.4493 0.124 0.3515 0.3669 19.0
1.33 69.0 828 1.4753 0.4493 0.124 0.3515 0.3669 19.0
1.33 70.0 840 1.4910 0.4351 0.113 0.3354 0.351 19.0
1.33 71.0 852 1.4857 0.4586 0.1505 0.3589 0.3746 19.0
1.33 72.0 864 1.4965 0.4481 0.1399 0.3585 0.3727 19.0
1.33 73.0 876 1.5141 0.4481 0.1399 0.3585 0.3727 19.0
1.33 74.0 888 1.5162 0.4407 0.1358 0.3534 0.3687 19.0
1.33 75.0 900 1.5005 0.4523 0.1439 0.3525 0.3682 19.0
1.33 76.0 912 1.4910 0.417 0.1126 0.3258 0.3396 19.0
1.33 77.0 924 1.4811 0.4174 0.1143 0.3375 0.3513 19.0
1.33 78.0 936 1.4698 0.4312 0.1281 0.3534 0.3687 19.0
1.33 79.0 948 1.4688 0.4298 0.1281 0.3522 0.3666 19.0
1.33 80.0 960 1.4665 0.4312 0.1281 0.3534 0.3687 19.0
1.33 81.0 972 1.4879 0.4601 0.1469 0.3684 0.3838 19.0
1.33 82.0 984 1.4899 0.4601 0.1469 0.3684 0.3838 19.0
1.33 83.0 996 1.4859 0.4601 0.1469 0.3684 0.3838 19.0
0.5425 84.0 1008 1.4906 0.4645 0.1549 0.3684 0.3838 19.0
0.5425 85.0 1020 1.4987 0.4547 0.1424 0.3567 0.3723 19.0
0.5425 86.0 1032 1.4982 0.4611 0.149 0.363 0.3787 19.0
0.5425 87.0 1044 1.4928 0.4611 0.149 0.363 0.3787 19.0
0.5425 88.0 1056 1.4995 0.4611 0.149 0.363 0.3787 19.0
0.5425 89.0 1068 1.4994 0.4547 0.1424 0.3567 0.3723 19.0
0.5425 90.0 1080 1.5050 0.4547 0.1424 0.3567 0.3723 19.0
0.5425 91.0 1092 1.5118 0.4611 0.149 0.363 0.3787 19.0
0.5425 92.0 1104 1.5085 0.4611 0.149 0.363 0.3787 19.0
0.5425 93.0 1116 1.5093 0.4611 0.149 0.363 0.3787 19.0
0.5425 94.0 1128 1.5149 0.4611 0.149 0.363 0.3787 19.0
0.5425 95.0 1140 1.5164 0.4611 0.149 0.363 0.3787 19.0
0.5425 96.0 1152 1.5165 0.4611 0.149 0.363 0.3787 19.0
0.5425 97.0 1164 1.5167 0.4611 0.149 0.363 0.3787 19.0
0.5425 98.0 1176 1.5171 0.4611 0.149 0.363 0.3787 19.0
0.5425 99.0 1188 1.5180 0.4709 0.1615 0.3748 0.3905 19.0
0.5425 100.0 1200 1.5181 0.4709 0.1615 0.3748 0.3905 19.0

Framework versions

  • Transformers 4.39.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2