File size: 11,865 Bytes
467d2d3
 
1858d9d
467d2d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73fe5b0
467d2d3
 
 
 
7e673af
cbd3919
467d2d3
 
 
 
 
 
 
1858d9d
467d2d3
7e673af
 
 
 
 
92b4293
467d2d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1858d9d
 
467d2d3
 
 
1858d9d
467d2d3
 
 
 
 
 
7e673af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
467d2d3
 
 
 
 
 
 
cbd3919
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
---
license: apache-2.0
base_model: google/flan-t5-base
tags:
- generated_from_trainer
datasets:
- hdfs_log_summary_dataset
metrics:
- rouge
model-index:
- name: flan-log-sage
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: hdfs_log_summary_dataset
      type: hdfs_log_summary_dataset
      config: default
      split: train
      args: default
    metrics:
    - name: Rouge1
      type: rouge
      value: 0.4709
pipeline_tag: summarization
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# flan-log-sage

This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the hdfs_log_summary_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5181
- Rouge1: 0.4709
- Rouge2: 0.1615
- Rougel: 0.3748
- Rougelsum: 0.3905
- Gen Len: 19.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log        | 1.0   | 12   | 2.9597          | 0.1985 | 0.0098 | 0.1629 | 0.1658    | 18.8    |
| No log        | 2.0   | 24   | 2.5389          | 0.3028 | 0.0271 | 0.2401 | 0.2492    | 17.8    |
| No log        | 3.0   | 36   | 2.2506          | 0.3349 | 0.0688 | 0.2549 | 0.2789    | 19.0    |
| No log        | 4.0   | 48   | 2.0524          | 0.4046 | 0.0982 | 0.3249 | 0.3409    | 19.0    |
| No log        | 5.0   | 60   | 1.9082          | 0.4479 | 0.1438 | 0.3449 | 0.3617    | 19.0    |
| No log        | 6.0   | 72   | 1.8325          | 0.4564 | 0.1577 | 0.3402 | 0.3562    | 18.8    |
| No log        | 7.0   | 84   | 1.7565          | 0.4441 | 0.1456 | 0.3335 | 0.351     | 19.0    |
| No log        | 8.0   | 96   | 1.7091          | 0.4691 | 0.1732 | 0.3486 | 0.3667    | 19.0    |
| No log        | 9.0   | 108  | 1.6683          | 0.4847 | 0.1645 | 0.3589 | 0.3667    | 19.0    |
| No log        | 10.0  | 120  | 1.5987          | 0.4847 | 0.1727 | 0.3667 | 0.3667    | 19.0    |
| No log        | 11.0  | 132  | 1.5606          | 0.4684 | 0.1935 | 0.3746 | 0.3751    | 19.0    |
| No log        | 12.0  | 144  | 1.5245          | 0.4749 | 0.193  | 0.3817 | 0.3894    | 19.0    |
| No log        | 13.0  | 156  | 1.4859          | 0.5163 | 0.2289 | 0.3802 | 0.3879    | 19.0    |
| No log        | 14.0  | 168  | 1.4950          | 0.4404 | 0.1522 | 0.3474 | 0.3474    | 19.0    |
| No log        | 15.0  | 180  | 1.4552          | 0.4609 | 0.1865 | 0.3573 | 0.362     | 19.0    |
| No log        | 16.0  | 192  | 1.4501          | 0.4521 | 0.1685 | 0.342  | 0.3423    | 19.0    |
| No log        | 17.0  | 204  | 1.3955          | 0.4763 | 0.1769 | 0.3788 | 0.379     | 19.0    |
| No log        | 18.0  | 216  | 1.4192          | 0.4602 | 0.199  | 0.3168 | 0.3178    | 19.0    |
| No log        | 19.0  | 228  | 1.3750          | 0.411  | 0.1258 | 0.3168 | 0.3269    | 19.0    |
| No log        | 20.0  | 240  | 1.3660          | 0.5038 | 0.2293 | 0.3638 | 0.3649    | 19.0    |
| No log        | 21.0  | 252  | 1.3610          | 0.4508 | 0.1364 | 0.3319 | 0.3397    | 19.0    |
| No log        | 22.0  | 264  | 1.3437          | 0.4495 | 0.1225 | 0.3217 | 0.3239    | 19.0    |
| No log        | 23.0  | 276  | 1.3394          | 0.4495 | 0.1225 | 0.3217 | 0.3239    | 19.0    |
| No log        | 24.0  | 288  | 1.3716          | 0.4499 | 0.1459 | 0.3562 | 0.3727    | 19.0    |
| No log        | 25.0  | 300  | 1.3673          | 0.4427 | 0.1585 | 0.3704 | 0.3784    | 19.0    |
| No log        | 26.0  | 312  | 1.3225          | 0.4427 | 0.1585 | 0.3704 | 0.3784    | 19.0    |
| No log        | 27.0  | 324  | 1.3041          | 0.4308 | 0.1457 | 0.3426 | 0.352     | 19.0    |
| No log        | 28.0  | 336  | 1.3350          | 0.4508 | 0.1459 | 0.3562 | 0.3647    | 19.0    |
| No log        | 29.0  | 348  | 1.3438          | 0.4243 | 0.1256 | 0.3364 | 0.3439    | 19.0    |
| No log        | 30.0  | 360  | 1.3332          | 0.4302 | 0.1262 | 0.3394 | 0.3474    | 19.0    |
| No log        | 31.0  | 372  | 1.3551          | 0.4647 | 0.1385 | 0.3595 | 0.3595    | 19.0    |
| No log        | 32.0  | 384  | 1.3822          | 0.4647 | 0.1385 | 0.3595 | 0.3595    | 19.0    |
| No log        | 33.0  | 396  | 1.3978          | 0.4647 | 0.1385 | 0.3595 | 0.3595    | 19.0    |
| No log        | 34.0  | 408  | 1.4044          | 0.4469 | 0.1331 | 0.3518 | 0.3518    | 19.0    |
| No log        | 35.0  | 420  | 1.3828          | 0.4614 | 0.1369 | 0.357  | 0.3727    | 19.0    |
| No log        | 36.0  | 432  | 1.3797          | 0.4551 | 0.1369 | 0.357  | 0.3727    | 19.0    |
| No log        | 37.0  | 444  | 1.3528          | 0.4493 | 0.124  | 0.3515 | 0.3669    | 19.0    |
| No log        | 38.0  | 456  | 1.3716          | 0.4493 | 0.124  | 0.3515 | 0.3669    | 19.0    |
| No log        | 39.0  | 468  | 1.4217          | 0.4429 | 0.124  | 0.3449 | 0.3606    | 19.0    |
| No log        | 40.0  | 480  | 1.4128          | 0.4429 | 0.124  | 0.3449 | 0.3606    | 19.0    |
| No log        | 41.0  | 492  | 1.3495          | 0.4429 | 0.124  | 0.3449 | 0.3606    | 19.0    |
| 1.33          | 42.0  | 504  | 1.3608          | 0.4397 | 0.1117 | 0.348  | 0.3636    | 19.0    |
| 1.33          | 43.0  | 516  | 1.4052          | 0.4605 | 0.1246 | 0.3688 | 0.3845    | 19.0    |
| 1.33          | 44.0  | 528  | 1.3969          | 0.4605 | 0.1435 | 0.3688 | 0.3845    | 19.0    |
| 1.33          | 45.0  | 540  | 1.3768          | 0.4551 | 0.1369 | 0.357  | 0.3727    | 19.0    |
| 1.33          | 46.0  | 552  | 1.3903          | 0.4429 | 0.124  | 0.3449 | 0.3606    | 19.0    |
| 1.33          | 47.0  | 564  | 1.3829          | 0.4458 | 0.1395 | 0.3547 | 0.3628    | 19.0    |
| 1.33          | 48.0  | 576  | 1.3972          | 0.4551 | 0.1369 | 0.357  | 0.3727    | 19.0    |
| 1.33          | 49.0  | 588  | 1.4015          | 0.4429 | 0.124  | 0.3449 | 0.3606    | 19.0    |
| 1.33          | 50.0  | 600  | 1.3791          | 0.4493 | 0.124  | 0.3515 | 0.3669    | 19.0    |
| 1.33          | 51.0  | 612  | 1.4205          | 0.4493 | 0.124  | 0.3515 | 0.3669    | 19.0    |
| 1.33          | 52.0  | 624  | 1.4269          | 0.4493 | 0.124  | 0.3515 | 0.3669    | 19.0    |
| 1.33          | 53.0  | 636  | 1.3988          | 0.4493 | 0.124  | 0.3515 | 0.3669    | 19.0    |
| 1.33          | 54.0  | 648  | 1.4126          | 0.4493 | 0.124  | 0.3515 | 0.3669    | 19.0    |
| 1.33          | 55.0  | 660  | 1.4178          | 0.4429 | 0.124  | 0.3449 | 0.3606    | 19.0    |
| 1.33          | 56.0  | 672  | 1.4674          | 0.4332 | 0.1189 | 0.3408 | 0.3565    | 19.0    |
| 1.33          | 57.0  | 684  | 1.4871          | 0.4543 | 0.1403 | 0.3546 | 0.3703    | 19.0    |
| 1.33          | 58.0  | 696  | 1.4709          | 0.4547 | 0.1365 | 0.3567 | 0.3723    | 19.0    |
| 1.33          | 59.0  | 708  | 1.4891          | 0.4493 | 0.124  | 0.3515 | 0.3669    | 19.0    |
| 1.33          | 60.0  | 720  | 1.5033          | 0.4398 | 0.1109 | 0.3289 | 0.3446    | 19.0    |
| 1.33          | 61.0  | 732  | 1.4830          | 0.4398 | 0.1109 | 0.3289 | 0.3446    | 19.0    |
| 1.33          | 62.0  | 744  | 1.4642          | 0.4246 | 0.1042 | 0.335  | 0.3507    | 19.0    |
| 1.33          | 63.0  | 756  | 1.4480          | 0.4246 | 0.1042 | 0.335  | 0.3507    | 19.0    |
| 1.33          | 64.0  | 768  | 1.4312          | 0.4493 | 0.124  | 0.3515 | 0.3669    | 19.0    |
| 1.33          | 65.0  | 780  | 1.4761          | 0.4378 | 0.1247 | 0.3458 | 0.3615    | 19.0    |
| 1.33          | 66.0  | 792  | 1.4705          | 0.4378 | 0.1247 | 0.3458 | 0.3615    | 19.0    |
| 1.33          | 67.0  | 804  | 1.4665          | 0.4493 | 0.124  | 0.3515 | 0.3669    | 19.0    |
| 1.33          | 68.0  | 816  | 1.4700          | 0.4493 | 0.124  | 0.3515 | 0.3669    | 19.0    |
| 1.33          | 69.0  | 828  | 1.4753          | 0.4493 | 0.124  | 0.3515 | 0.3669    | 19.0    |
| 1.33          | 70.0  | 840  | 1.4910          | 0.4351 | 0.113  | 0.3354 | 0.351     | 19.0    |
| 1.33          | 71.0  | 852  | 1.4857          | 0.4586 | 0.1505 | 0.3589 | 0.3746    | 19.0    |
| 1.33          | 72.0  | 864  | 1.4965          | 0.4481 | 0.1399 | 0.3585 | 0.3727    | 19.0    |
| 1.33          | 73.0  | 876  | 1.5141          | 0.4481 | 0.1399 | 0.3585 | 0.3727    | 19.0    |
| 1.33          | 74.0  | 888  | 1.5162          | 0.4407 | 0.1358 | 0.3534 | 0.3687    | 19.0    |
| 1.33          | 75.0  | 900  | 1.5005          | 0.4523 | 0.1439 | 0.3525 | 0.3682    | 19.0    |
| 1.33          | 76.0  | 912  | 1.4910          | 0.417  | 0.1126 | 0.3258 | 0.3396    | 19.0    |
| 1.33          | 77.0  | 924  | 1.4811          | 0.4174 | 0.1143 | 0.3375 | 0.3513    | 19.0    |
| 1.33          | 78.0  | 936  | 1.4698          | 0.4312 | 0.1281 | 0.3534 | 0.3687    | 19.0    |
| 1.33          | 79.0  | 948  | 1.4688          | 0.4298 | 0.1281 | 0.3522 | 0.3666    | 19.0    |
| 1.33          | 80.0  | 960  | 1.4665          | 0.4312 | 0.1281 | 0.3534 | 0.3687    | 19.0    |
| 1.33          | 81.0  | 972  | 1.4879          | 0.4601 | 0.1469 | 0.3684 | 0.3838    | 19.0    |
| 1.33          | 82.0  | 984  | 1.4899          | 0.4601 | 0.1469 | 0.3684 | 0.3838    | 19.0    |
| 1.33          | 83.0  | 996  | 1.4859          | 0.4601 | 0.1469 | 0.3684 | 0.3838    | 19.0    |
| 0.5425        | 84.0  | 1008 | 1.4906          | 0.4645 | 0.1549 | 0.3684 | 0.3838    | 19.0    |
| 0.5425        | 85.0  | 1020 | 1.4987          | 0.4547 | 0.1424 | 0.3567 | 0.3723    | 19.0    |
| 0.5425        | 86.0  | 1032 | 1.4982          | 0.4611 | 0.149  | 0.363  | 0.3787    | 19.0    |
| 0.5425        | 87.0  | 1044 | 1.4928          | 0.4611 | 0.149  | 0.363  | 0.3787    | 19.0    |
| 0.5425        | 88.0  | 1056 | 1.4995          | 0.4611 | 0.149  | 0.363  | 0.3787    | 19.0    |
| 0.5425        | 89.0  | 1068 | 1.4994          | 0.4547 | 0.1424 | 0.3567 | 0.3723    | 19.0    |
| 0.5425        | 90.0  | 1080 | 1.5050          | 0.4547 | 0.1424 | 0.3567 | 0.3723    | 19.0    |
| 0.5425        | 91.0  | 1092 | 1.5118          | 0.4611 | 0.149  | 0.363  | 0.3787    | 19.0    |
| 0.5425        | 92.0  | 1104 | 1.5085          | 0.4611 | 0.149  | 0.363  | 0.3787    | 19.0    |
| 0.5425        | 93.0  | 1116 | 1.5093          | 0.4611 | 0.149  | 0.363  | 0.3787    | 19.0    |
| 0.5425        | 94.0  | 1128 | 1.5149          | 0.4611 | 0.149  | 0.363  | 0.3787    | 19.0    |
| 0.5425        | 95.0  | 1140 | 1.5164          | 0.4611 | 0.149  | 0.363  | 0.3787    | 19.0    |
| 0.5425        | 96.0  | 1152 | 1.5165          | 0.4611 | 0.149  | 0.363  | 0.3787    | 19.0    |
| 0.5425        | 97.0  | 1164 | 1.5167          | 0.4611 | 0.149  | 0.363  | 0.3787    | 19.0    |
| 0.5425        | 98.0  | 1176 | 1.5171          | 0.4611 | 0.149  | 0.363  | 0.3787    | 19.0    |
| 0.5425        | 99.0  | 1188 | 1.5180          | 0.4709 | 0.1615 | 0.3748 | 0.3905    | 19.0    |
| 0.5425        | 100.0 | 1200 | 1.5181          | 0.4709 | 0.1615 | 0.3748 | 0.3905    | 19.0    |


### Framework versions

- Transformers 4.39.0
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2