|
atitude_mean: 39.95184413388056 |
|
latitude_std: 0.0006308700565432299 |
|
longitude_mean: -75.19147985909444 |
|
longitude_std: 0.0006379960634765379 |
|
|
|
To run input tensors to `predict_from_model(input_tensor)`: |
|
|
|
|
|
``` |
|
import torch |
|
import torch.nn as nn |
|
import torchvision.transforms as transforms |
|
from torch.utils.data import DataLoader, Dataset |
|
from transformers import AutoImageProcessor, AutoModelForImageClassification |
|
from huggingface_hub import PyTorchModelHubMixin |
|
from PIL import Image |
|
import os |
|
import numpy as np |
|
|
|
def predict_from_model(input_tensor): |
|
import torch |
|
import torchvision.transforms as transforms |
|
import matplotlib.pyplot as plt |
|
from geopy.distance import geodesic |
|
from datasets import load_dataset |
|
from huggingface_hub import hf_hub_download |
|
import numpy as np |
|
|
|
torch.cuda.empty_cache() |
|
|
|
############# |
|
path_map = {"best region models/region_model_lr_0.0002_step_10_gamma_0.1_epochs_15.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="best region models/region_model_lr_0.0002_step_10_gamma_0.1_epochs_15.pth"), |
|
"best region models/region_model_lr_0.00035_step_10_gamma_0.1_epochs_50.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="best region models/region_model_lr_0.00035_step_10_gamma_0.1_epochs_50.pth"), |
|
"best region models/region_model_lr_0.0005_step_10_gamma_0.1_epochs_50.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="best region models/region_model_lr_0.0005_step_10_gamma_0.1_epochs_50.pth"), |
|
"best region models/region_model_lr_0.0005_step_10_gamma_0.1_epochs_60.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="best region models/region_model_lr_0.0005_step_10_gamma_0.1_epochs_60.pth"), |
|
"best region models/region_model_lr_0.002_step_10_gamma_0.1_epochs_100.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="best region models/region_model_lr_0.002_step_10_gamma_0.1_epochs_100.pth"), |
|
"best region models/model_histories.json" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="best region models/model_histories.json"), |
|
"models/location_model_0.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="models/location_model_0.pth"), |
|
"models/location_model_1.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="models/location_model_1.pth"), |
|
"models/location_model_2.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="models/location_model_2.pth"), |
|
"models/location_model_3.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="models/location_model_3.pth"), |
|
"models/location_model_4.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="models/location_model_4.pth"), |
|
"models/location_model_5.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="models/location_model_5.pth"), |
|
"models/location_model_6.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="models/location_model_6.pth"), |
|
"region_ensemble_weights.json" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="region_ensemble_weights.json")} |
|
|
|
############## |
|
import torch |
|
import torch.nn as nn |
|
import torchvision.transforms as transforms |
|
from torch.utils.data import DataLoader, Dataset |
|
from transformers import AutoImageProcessor, AutoModelForImageClassification |
|
from huggingface_hub import PyTorchModelHubMixin |
|
from PIL import Image |
|
import os |
|
import numpy as np |
|
|
|
class PredictedObject(): |
|
def __init__(self, image, lat, lon, region, original_lat=None, original_lon=None): |
|
self.lat = lat |
|
self.lon = lon |
|
self.region = region |
|
self.image = image |
|
|
|
if original_lat is None or original_lon is None: |
|
self.original_lat = lat |
|
self.original_lon = lon |
|
else: |
|
self.original_lat = original_lat |
|
self.original_lon = original_lon |
|
|
|
self.predicted_region = None |
|
self.predicted_lat = None |
|
self.predicted_lon = None |
|
|
|
def __lt__(self, other): |
|
return self.predicted_region < other.predicted_region |
|
|
|
def __eq__(self, other): |
|
return self.predicted_region == other.predicted_region |
|
|
|
class PredictionObjectDataset(Dataset): |
|
def __init__(self, object_lst, transform=None, lat_mean=None, lat_std=None, lon_mean=None, lon_std=None, useRegions=False, give_originals=False): |
|
self.object_lst = object_lst |
|
self.transform = transform |
|
self.useRegions = useRegions |
|
self.give_originals = give_originals |
|
|
|
# Compute mean and std from the dataframe if not provided |
|
if (len(self.object_lst) == 1): |
|
self.latitude_mean = self.object_lst[0].lat |
|
self.latitude_std = 1 |
|
self.longitude_mean = self.object_lst[0].lon |
|
self.longitude_std = 1 |
|
else: |
|
self.latitude_mean = lat_mean if lat_mean is not None else np.mean(np.array([x.lat for x in self.object_lst])) |
|
self.latitude_std = lat_std if lat_std is not None else np.std(np.array([x.lat for x in self.object_lst])) |
|
self.longitude_mean = lon_mean if lon_mean is not None else np.mean(np.array([x.lon for x in self.object_lst])) |
|
self.longitude_std = lon_std if lon_std is not None else np.std(np.array([x.lon for x in self.object_lst])) |
|
|
|
self.normalize() |
|
|
|
def normalize(self): |
|
new_object_lst = [] |
|
for obj in self.object_lst: |
|
obj.lat = (obj.lat - self.latitude_mean) / self.latitude_std |
|
obj.lon = (obj.lon - self.longitude_mean) / self.longitude_std |
|
new_object_lst.append(obj) |
|
self.object_lst = new_object_lst |
|
|
|
def __len__(self): |
|
return len(self.object_lst) |
|
|
|
def __getitem__(self, idx): |
|
# Extract data |
|
example = self.object_lst[idx] |
|
|
|
# Load and process the image |
|
image = example.image |
|
latitude = example.lat |
|
longitude = example.lon |
|
region = example.region |
|
|
|
# image = image.rotate(-90, expand=True) |
|
if self.transform: |
|
image = self.transform(image) |
|
|
|
# Normalize GPS coordinates |
|
gps_coords = torch.tensor([latitude, longitude], dtype=torch.float32) |
|
gps_coords_orginal = torch.tensor([example.original_lat, example.original_lon], dtype=torch.float32) |
|
|
|
if self.useRegions and self.give_originals: |
|
return image, gps_coords, gps_coords_orginal, region |
|
elif self.useRegions: |
|
return image, gps_coords, region |
|
elif self.give_originals: |
|
return image, gps_coords, gps_coords_orginal |
|
else: |
|
return image, gps_coords |
|
|
|
class TensorDataset(Dataset): |
|
def __init__(self, tensors, transform=None, lat_mean=None, lat_std=None, lon_mean=None, lon_std=None, useRegions=False, give_originals=False): |
|
# self.hf_dataset = hf_dataset.map( |
|
self.tensors = tensors |
|
|
|
def __len__(self): |
|
return len(self.tensors) |
|
|
|
def __getitem__(self, idx): |
|
# Extract data |
|
image = self.tensors[idx] |
|
return image |
|
################## |
|
transform = transforms.Compose([ |
|
#transforms.RandomResizedCrop(224), # Random crop and resize to 224x224 |
|
transforms.Resize((224, 224)), |
|
transforms.RandomHorizontalFlip(), # Random horizontal flip |
|
# transforms.RandomRotation(degrees=15), # Random rotation between -15 and 15 degrees |
|
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1), # Random color jitter |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], |
|
std=[0.229, 0.224, 0.225]) |
|
]) |
|
|
|
# Optionally, you can create a separate transform for inference without augmentations |
|
inference_transform = transforms.Compose([ |
|
transforms.Resize((224, 224)), |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], |
|
std=[0.229, 0.224, 0.225]) |
|
]) |
|
|
|
|
|
# Create the training dataset and dataloader |
|
train_dataset = TensorDataset(input_tensor) |
|
train_dataloader = DataLoader(train_dataset, batch_size=32, shuffle=True) |
|
|
|
# lat_mean = train_dataset.latitude_mean |
|
# lat_std = train_dataset.latitude_std |
|
# lon_mean = train_dataset.longitude_mean |
|
# lon_std = train_dataset.longitude_std |
|
|
|
##################### |
|
import torch |
|
import torch.nn as nn |
|
import torchvision.transforms as transforms |
|
from torch.utils.data import DataLoader, Dataset |
|
from transformers import AutoImageProcessor, AutoModelForImageClassification |
|
from huggingface_hub import PyTorchModelHubMixin |
|
from PIL import Image |
|
import os |
|
import numpy as np |
|
import json |
|
import torchvision.models as models |
|
################## |
|
import torch.nn.functional as F |
|
class_frequency = torch.zeros(7) |
|
|
|
region_one_hot = F.one_hot(torch.tensor([0,1,2,3,4,5,6]), num_classes=7) |
|
|
|
# for _, _, region in train_dataset: |
|
# class_frequency += region_one_hot[region] |
|
|
|
# print(class_frequency) |
|
# class_weights = torch.full((7,), len(train_dataset)) / class_frequency |
|
# class_weights = class_weights / torch.max(class_weights) |
|
# print(class_weights) |
|
class_weights = [0.2839, 0.4268, 0.5583, 0.3873, 1.0000, 0.6036, 0.6009] |
|
##################### |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
# print(f'Using device: {device}') |
|
|
|
per_model_weights = [] |
|
with open(path_map['region_ensemble_weights.json'], 'r') as file: |
|
per_model_weights = json.load(file) |
|
|
|
search_stats = [] |
|
with open(path_map['best region models/model_histories.json'], 'r') as file: |
|
search_stats = json.load(file) |
|
|
|
my_models = [] |
|
|
|
for i, (path, _, _, _, _, _, _, _, _) in enumerate(search_stats): |
|
path = path_map[path] |
|
state_dict = torch.load(path) |
|
|
|
region_model = models.resnet18(pretrained=False) |
|
num_features = region_model.fc.in_features |
|
region_model.fc = nn.Sequential(nn.Dropout(0.5), |
|
nn.Linear(num_features, 7)) |
|
region_model.load_state_dict(state_dict) |
|
|
|
region_model.cpu() |
|
|
|
my_models.append(region_model) |
|
|
|
per_model_weights = torch.tensor(per_model_weights).to(device) |
|
######### |
|
torch.cuda.empty_cache() |
|
########## |
|
predicted_object_lst = [] |
|
|
|
num_regions = 7 |
|
|
|
for images in train_dataloader: |
|
images = images.to(device) |
|
# gps_coords_original = gps_coords_original.to(device) |
|
|
|
outputs = torch.zeros((images.shape[0], 7)).to(device) |
|
|
|
for i, model in enumerate(my_models): |
|
model.eval() |
|
model.to(device) |
|
|
|
model_outputs = model(images) |
|
outputs += per_model_weights[i] * model_outputs |
|
|
|
model.cpu() |
|
# print(i, len(predicted_object_lst)) |
|
|
|
outputs /= len(my_models) |
|
|
|
_, predicted_regions = torch.max(outputs, 1) |
|
|
|
predicted_regions = predicted_regions.cpu().numpy() |
|
images = images.cpu().numpy() |
|
|
|
for i in range(len(predicted_regions)): |
|
predicted_object = PredictedObject(images[i], -1, -1, predicted_regions[i]) |
|
predicted_object.predicted_region = predicted_regions[i] |
|
predicted_object_lst.append(predicted_object) |
|
|
|
torch.cuda.empty_cache() |
|
################# |
|
predicted_object_lst = sorted(predicted_object_lst) |
|
|
|
po_predicted_region_lst = [[] for _ in range(7)] |
|
|
|
for po in predicted_object_lst: |
|
po.lat = po.original_lat |
|
po.lon = po.original_lon |
|
|
|
po_predicted_region_lst[po.predicted_region].append(po) |
|
|
|
po_datasets = [PredictionObjectDataset(x, give_originals=True) for x in po_predicted_region_lst] |
|
# print([len(ds) for ds in po_datasets]) |
|
po_loaders = [DataLoader(x, batch_size=32, shuffle=False) for x in po_datasets] |
|
|
|
# lat_mean_lst = [x.latitude_mean for x in po_datasets] |
|
# lat_std_lst = [x.latitude_std for x in po_datasets] |
|
# lon_mean_lst = [x.longitude_mean for x in po_datasets] |
|
# lon_std_lst = [x.longitude_std for x in po_datasets] |
|
|
|
############ |
|
from sklearn.metrics import mean_absolute_error, mean_squared_error |
|
import torch.nn.functional as F |
|
|
|
# all_preds = [] |
|
# all_actuals = [] |
|
all_preds_norm = [] |
|
# all_actuals_norm = [] |
|
# all_regions = [] |
|
|
|
for i in range(num_regions): |
|
# print(f'region {i}') |
|
# model_all_preds = [] |
|
# model_all_actuals = [] |
|
model_all_preds_norm = [] |
|
# model_all_actuals_norm = [] |
|
# model_all_regions = [] |
|
|
|
val_dataloader = po_loaders[i] |
|
if (len(val_dataloader) == 0): |
|
continue |
|
|
|
state_dict = torch.load(path_map[f'models/location_model_{i}.pth']) |
|
|
|
model_loction = models.resnet18(pretrained=False) |
|
num_features = model_loction.fc.in_features |
|
model_loction.fc = nn.Linear(num_features, 2) |
|
|
|
model_loction.load_state_dict(state_dict) |
|
|
|
model_loction.to(device) |
|
|
|
model_loction.eval() |
|
with torch.no_grad(): |
|
for images, _, _ in val_dataloader: |
|
images = images.to(device) |
|
|
|
outputs = model_loction(images) |
|
|
|
# Denormalize predictions and actual values |
|
preds_norm = outputs.cpu() |
|
# actuals_norm = gps_coords.cpu() |
|
# preds = outputs.cpu() * torch.tensor([lat_std_lst[i], lon_std_lst[i]]) + torch.tensor([lat_mean_lst[i], lon_mean_lst[i]]) |
|
# actuals = gps_coords.cpu() * torch.tensor([lat_std_lst[i], lon_std_lst[i]]) + torch.tensor([lat_mean_lst[i], lon_mean_lst[i]])#gps_coords_original.cpu() |
|
|
|
# model_all_preds.append(preds) |
|
# model_all_actuals.append(actuals) |
|
model_all_preds_norm.append(preds_norm) |
|
# model_all_actuals_norm.append(actuals_norm) |
|
# model_all_regions.extend([i for _ in range(len(images))]) |
|
|
|
# Concatenate all batches |
|
# model_all_preds = torch.cat(model_all_preds) |
|
# model_all_actuals = torch.cat(model_all_actuals) |
|
model_all_preds_norm = torch.cat(model_all_preds_norm) |
|
# model_all_actuals_norm = torch.cat(model_all_actuals_norm) |
|
|
|
|
|
# Compute error metrics |
|
# rmse = F.mse_loss(model_all_actuals_norm, model_all_preds_norm) |
|
|
|
# model_all_preds = model_all_preds.numpy() |
|
# model_all_actuals = model_all_actuals.numpy() |
|
model_all_preds_norm = model_all_preds_norm.numpy() |
|
# model_all_actuals_norm = model_all_actuals_norm.numpy() |
|
|
|
# print(model_all_preds[0]) |
|
# print(model_all_actuals[0]) |
|
# print(model_all_preds_norm[0]) |
|
# print(model_all_actuals_norm[0]) |
|
|
|
# print(f'Mean Squared Error: {rmse}') |
|
|
|
# all_preds.append([model_all_preds]) |
|
# all_actuals.append([model_all_actuals]) |
|
all_preds_norm.append([model_all_preds_norm]) |
|
# print("images predicted: ", len(all_preds_norm)) |
|
# all_actuals_norm.append([model_all_actuals_norm]) |
|
# all_regions.append(model_all_regions) |
|
|
|
del model_loction |
|
torch.cuda.empty_cache() |
|
############ |
|
# all_preds_denorm = all_preds |
|
# all_actuals_denorm = all_actuals |
|
all_preds = all_preds_norm |
|
# all_actuals = all_actuals_norm |
|
# all_regions = all_regions |
|
|
|
def flatten(lst): |
|
newlst = [] |
|
for sublst in lst: |
|
for item in sublst: |
|
newlst.append(item) |
|
return newlst |
|
|
|
all_preds = flatten(all_preds) |
|
# all_actuals = flatten(all_actuals) |
|
# all_preds_denorm = flatten(all_preds_denorm) |
|
# all_actuals_denorm = flatten(all_actuals_denorm) |
|
# all_regions = list(flatten(all_regions)) |
|
############# |
|
# actual_denorm_y = [] |
|
# actual_denorm_x = [] |
|
# for x in all_actuals_denorm: |
|
# for e in x: |
|
# actual_denorm_x.append(e[0]) |
|
# actual_denorm_y.append(e[1]) |
|
# # actual_denorm_x.append(x[0]) |
|
# # actual_denorm_y.append(x[1]) |
|
|
|
# pred_denorm_y = [] |
|
# pred_denorm_x = [] |
|
# for x in all_preds_denorm: |
|
# for e in x: |
|
# pred_denorm_x.append(e[0]) |
|
# pred_denorm_y.append(e[1]) |
|
# # pred_denorm_x.append(x[0]) |
|
# # pred_denorm_y.append(x[1]) |
|
|
|
# actual_y = [] |
|
# actual_x = [] |
|
# for x in all_actuals: |
|
# for e in x: |
|
# actual_x.append(e[0]) |
|
# actual_y.append(e[1]) |
|
# # actual_x.append(x[0]) |
|
# # actual_y.append(x[1]) |
|
|
|
pred_y = [] |
|
pred_x = [] |
|
for x in all_preds: |
|
for e in x: |
|
pred_x.append(e[0]) |
|
pred_y.append(e[1]) |
|
############ |
|
t = torch.zeros((len(pred_x), 2)) |
|
t[:, 0] = torch.tensor(pred_x) |
|
t[:, 1] = torch.tensor(pred_y) |
|
return t |
|
|
|
# import matplotlib.pyplot as plt |
|
# from geopy.distance import geodesic |
|
# import seaborn as sns |
|
|
|
# print(pred_x) |
|
# print(pred_y) |
|
# print(actual_x) |
|
# print(actual_y) |
|
# print(pred_denorm_x) |
|
# print(pred_denorm_y) |
|
# print(actual_denorm_x) |
|
# print(actual_denorm_y) |
|
|
|
# plt.scatter(actual_denorm_y, actual_denorm_x, label='Actual', color='black', alpha=0.5) |
|
# # plt.scatter(all_preds_denorm[:, 1], all_preds_denorm[:, 0], label='Predicted', color='blue', alpha=0.5) |
|
|
|
# over100 = 0 |
|
# under100 = 0 |
|
# under50 = 0 |
|
# under25 = 0 |
|
|
|
# all_over100 = [] |
|
# all_under100 = [] |
|
# all_under50 = [] |
|
# all_under25 = [] |
|
# average_dist = 0.0 |
|
|
|
# dists = [] |
|
|
|
# for i in range(len(actual_denorm_x)): |
|
# pred_denorm_loc = (pred_denorm_x[i], pred_denorm_y[i]) |
|
# actual_denorm_loc = (actual_denorm_x[i], actual_denorm_y[i]) |
|
|
|
# dist = geodesic(actual_denorm_loc, pred_denorm_loc).meters |
|
# dists.append(dist) |
|
|
|
# if dist > 50: |
|
# over100 += 1 |
|
# all_over100.append(pred_denorm_loc) |
|
# elif dist > 25: |
|
# under100 += 1 |
|
# all_under100.append(pred_denorm_loc) |
|
# elif dist > 10: |
|
# under50 += 1 |
|
# all_under50.append(pred_denorm_loc) |
|
# else: |
|
# under25 += 1 |
|
# all_under25.append(pred_denorm_loc) |
|
|
|
# plt.plot( |
|
# [actual_denorm_y[i], pred_denorm_y[i]], |
|
# [actual_denorm_x[i], pred_denorm_x[i]], |
|
# color='grey', |
|
# alpha=0.5, |
|
# linewidth=0.5 |
|
# ) |
|
|
|
# dists = np.array(dists) |
|
|
|
# plt.scatter([y for x,y in all_over100], [x for x,y in all_over100], label=f'over 50m: {over100}', color='red', alpha=0.5) |
|
# plt.scatter([y for x,y in all_under100], [x for x,y in all_under100], label=f'under 50m: {under100}', color='orange', alpha=0.5) |
|
# plt.scatter([y for x,y in all_under50], [x for x,y in all_under50], label=f'under 25m: {under50}', color='green', alpha=0.5) |
|
# plt.scatter([y for x,y in all_under25], [x for x,y in all_under25], label=f'under 10m: {under25}', color='blue', alpha=0.5) |
|
|
|
|
|
# plt.legend() |
|
|
|
# plt.xlabel('Longitude') |
|
# plt.ylabel('Latitude') |
|
# plt.title('Actual vs. Predicted GPS Coordinates with Error Lines') |
|
# plt.show() |
|
|
|
# regions_enum = {0 : "fisher bennett", |
|
# 1 : "outer quad", |
|
# 2 : "outside football", |
|
# 3 : "chem building", |
|
# 4 : "top of walk", |
|
# 5 : "bottom of walk", |
|
# 6 : "chem courtyard", |
|
# 7 : "no assigned region"} |
|
|
|
# colors = {0:'red', |
|
# 1:'orange', |
|
# 2:'yellow', |
|
# 3:'green', |
|
# 4:'blue', |
|
# 5:'purple', |
|
# 6:'pink', |
|
# 7:'black'} |
|
|
|
# for i in range(len(actual_denorm_x)): |
|
|
|
# plt.plot( |
|
# [actual_denorm_y[i], pred_denorm_y[i]], |
|
# [actual_denorm_x[i], pred_denorm_x[i]], |
|
# color='grey', |
|
# alpha=0.25, |
|
# linewidth=0.5 |
|
# ) |
|
|
|
# # plt.scatter([p[0] for p in pts], [p[1] for p in pts], s=15, c=[colors[i] for i in all_regions], edgecolors='black') |
|
# colors_lst = [colors[i] for i in all_regions] |
|
# plt.scatter(actual_denorm_y, actual_denorm_x, label='Actual', color=colors_lst, alpha=0.5) |
|
# plt.scatter(pred_denorm_y, pred_denorm_x, label='Predicted', color=colors_lst, alpha=0.5) |
|
# # plt.gca().invert_xaxis() |
|
|
|
# plt.show() |
|
|
|
# # Plot the distribution |
|
# plt.figure(figsize=(10, 6)) |
|
# sns.histplot(dists, bins=30, kde=True, color='blue', alpha=0.7) |
|
|
|
# # Add labels and title |
|
# plt.title("Distribution of Geodesic Distances (Accuracy of Guesses)") |
|
# plt.xlabel("Geodesic Distance (meters)") |
|
# plt.ylabel("Frequency") |
|
|
|
# # Add mean and median lines for context |
|
# mean_distance = dists.mean() |
|
# median_distance = np.median(dists) |
|
# plt.axvline(mean_distance, color='red', linestyle='--', label=f'Mean: {mean_distance:.2f} meters') |
|
# plt.axvline(median_distance, color='green', linestyle='--', label=f'Median: {median_distance:.2f} meters') |
|
|
|
# plt.legend() |
|
# plt.grid(True) |
|
# plt.show() |
|
``` |