imlamont commited on
Commit
a41415e
1 Parent(s): a485d63

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -8
README.md CHANGED
@@ -1,10 +1,11 @@
1
- latitude_mean: 39.95184413388056
2
  latitude_std: 0.0006308700565432299
3
  longitude_mean: -75.19147985909444
4
  longitude_std: 0.0006379960634765379
5
 
6
  To run input tensors to `predict_from_model(input_tensor)`:
7
 
 
8
  ```
9
  import torch
10
  import torch.nn as nn
@@ -24,10 +25,13 @@ def predict_from_model(input_tensor):
24
  from datasets import load_dataset
25
  from huggingface_hub import hf_hub_download
26
  import numpy as np
 
 
 
27
  #############
28
  path_map = {"best region models/region_model_lr_0.0002_step_10_gamma_0.1_epochs_15.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="best region models/region_model_lr_0.0002_step_10_gamma_0.1_epochs_15.pth"),
29
  "best region models/region_model_lr_0.00035_step_10_gamma_0.1_epochs_50.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="best region models/region_model_lr_0.00035_step_10_gamma_0.1_epochs_50.pth"),
30
- "best region models/region_model_lr_0.0005_step_10_gamma_0.1_epochs_50.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="best region models/region_model_lr_0.0005_step_10_gamma_0.1_epochs_50.pth"),
31
  "best region models/region_model_lr_0.0005_step_10_gamma_0.1_epochs_60.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="best region models/region_model_lr_0.0005_step_10_gamma_0.1_epochs_60.pth"),
32
  "best region models/region_model_lr_0.002_step_10_gamma_0.1_epochs_100.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="best region models/region_model_lr_0.002_step_10_gamma_0.1_epochs_100.pth"),
33
  "best region models/model_histories.json" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="best region models/model_histories.json"),
@@ -138,7 +142,7 @@ def predict_from_model(input_tensor):
138
  def __init__(self, tensors, transform=None, lat_mean=None, lat_std=None, lon_mean=None, lon_std=None, useRegions=False, give_originals=False):
139
  # self.hf_dataset = hf_dataset.map(
140
  self.tensors = tensors
141
-
142
  def __len__(self):
143
  return len(self.tensors)
144
 
@@ -204,7 +208,7 @@ def predict_from_model(input_tensor):
204
  class_weights = [0.2839, 0.4268, 0.5583, 0.3873, 1.0000, 0.6036, 0.6009]
205
  #####################
206
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
207
- print(f'Using device: {device}')
208
 
209
  per_model_weights = []
210
  with open(path_map['region_ensemble_weights.json'], 'r') as file:
@@ -279,6 +283,7 @@ def predict_from_model(input_tensor):
279
  po_predicted_region_lst[po.predicted_region].append(po)
280
 
281
  po_datasets = [PredictionObjectDataset(x, give_originals=True) for x in po_predicted_region_lst]
 
282
  po_loaders = [DataLoader(x, batch_size=32, shuffle=False) for x in po_datasets]
283
 
284
  # lat_mean_lst = [x.latitude_mean for x in po_datasets]
@@ -305,6 +310,8 @@ def predict_from_model(input_tensor):
305
  # model_all_regions = []
306
 
307
  val_dataloader = po_loaders[i]
 
 
308
 
309
  state_dict = torch.load(path_map[f'models/location_model_{i}.pth'])
310
 
@@ -360,6 +367,7 @@ def predict_from_model(input_tensor):
360
  # all_preds.append([model_all_preds])
361
  # all_actuals.append([model_all_actuals])
362
  all_preds_norm.append([model_all_preds_norm])
 
363
  # all_actuals_norm.append([model_all_actuals_norm])
364
  # all_regions.append(model_all_regions)
365
 
@@ -550,7 +558,4 @@ def predict_from_model(input_tensor):
550
  # plt.legend()
551
  # plt.grid(True)
552
  # plt.show()
553
-
554
- torch.cuda.empty_cache()
555
- predict_from_model(input)
556
- ```
 
1
+ atitude_mean: 39.95184413388056
2
  latitude_std: 0.0006308700565432299
3
  longitude_mean: -75.19147985909444
4
  longitude_std: 0.0006379960634765379
5
 
6
  To run input tensors to `predict_from_model(input_tensor)`:
7
 
8
+
9
  ```
10
  import torch
11
  import torch.nn as nn
 
25
  from datasets import load_dataset
26
  from huggingface_hub import hf_hub_download
27
  import numpy as np
28
+
29
+ torch.cuda.empty_cache()
30
+
31
  #############
32
  path_map = {"best region models/region_model_lr_0.0002_step_10_gamma_0.1_epochs_15.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="best region models/region_model_lr_0.0002_step_10_gamma_0.1_epochs_15.pth"),
33
  "best region models/region_model_lr_0.00035_step_10_gamma_0.1_epochs_50.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="best region models/region_model_lr_0.00035_step_10_gamma_0.1_epochs_50.pth"),
34
+ "best region models/region_model_lr_0.0005_step_10_gamma_0.1_epochs_50.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="best region models/region_model_lr_0.0005_step_10_gamma_0.1_epochs_50.pth"),
35
  "best region models/region_model_lr_0.0005_step_10_gamma_0.1_epochs_60.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="best region models/region_model_lr_0.0005_step_10_gamma_0.1_epochs_60.pth"),
36
  "best region models/region_model_lr_0.002_step_10_gamma_0.1_epochs_100.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="best region models/region_model_lr_0.002_step_10_gamma_0.1_epochs_100.pth"),
37
  "best region models/model_histories.json" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="best region models/model_histories.json"),
 
142
  def __init__(self, tensors, transform=None, lat_mean=None, lat_std=None, lon_mean=None, lon_std=None, useRegions=False, give_originals=False):
143
  # self.hf_dataset = hf_dataset.map(
144
  self.tensors = tensors
145
+
146
  def __len__(self):
147
  return len(self.tensors)
148
 
 
208
  class_weights = [0.2839, 0.4268, 0.5583, 0.3873, 1.0000, 0.6036, 0.6009]
209
  #####################
210
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
211
+ # print(f'Using device: {device}')
212
 
213
  per_model_weights = []
214
  with open(path_map['region_ensemble_weights.json'], 'r') as file:
 
283
  po_predicted_region_lst[po.predicted_region].append(po)
284
 
285
  po_datasets = [PredictionObjectDataset(x, give_originals=True) for x in po_predicted_region_lst]
286
+ # print([len(ds) for ds in po_datasets])
287
  po_loaders = [DataLoader(x, batch_size=32, shuffle=False) for x in po_datasets]
288
 
289
  # lat_mean_lst = [x.latitude_mean for x in po_datasets]
 
310
  # model_all_regions = []
311
 
312
  val_dataloader = po_loaders[i]
313
+ if (len(val_dataloader) == 0):
314
+ continue
315
 
316
  state_dict = torch.load(path_map[f'models/location_model_{i}.pth'])
317
 
 
367
  # all_preds.append([model_all_preds])
368
  # all_actuals.append([model_all_actuals])
369
  all_preds_norm.append([model_all_preds_norm])
370
+ # print("images predicted: ", len(all_preds_norm))
371
  # all_actuals_norm.append([model_all_actuals_norm])
372
  # all_regions.append(model_all_regions)
373
 
 
558
  # plt.legend()
559
  # plt.grid(True)
560
  # plt.show()
561
+ ```