imlamont commited on
Commit
a485d63
·
verified ·
1 Parent(s): cfd1384

add readme

Browse files
Files changed (1) hide show
  1. README.md +556 -0
README.md ADDED
@@ -0,0 +1,556 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ latitude_mean: 39.95184413388056
2
+ latitude_std: 0.0006308700565432299
3
+ longitude_mean: -75.19147985909444
4
+ longitude_std: 0.0006379960634765379
5
+
6
+ To run input tensors to `predict_from_model(input_tensor)`:
7
+
8
+ ```
9
+ import torch
10
+ import torch.nn as nn
11
+ import torchvision.transforms as transforms
12
+ from torch.utils.data import DataLoader, Dataset
13
+ from transformers import AutoImageProcessor, AutoModelForImageClassification
14
+ from huggingface_hub import PyTorchModelHubMixin
15
+ from PIL import Image
16
+ import os
17
+ import numpy as np
18
+
19
+ def predict_from_model(input_tensor):
20
+ import torch
21
+ import torchvision.transforms as transforms
22
+ import matplotlib.pyplot as plt
23
+ from geopy.distance import geodesic
24
+ from datasets import load_dataset
25
+ from huggingface_hub import hf_hub_download
26
+ import numpy as np
27
+ #############
28
+ path_map = {"best region models/region_model_lr_0.0002_step_10_gamma_0.1_epochs_15.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="best region models/region_model_lr_0.0002_step_10_gamma_0.1_epochs_15.pth"),
29
+ "best region models/region_model_lr_0.00035_step_10_gamma_0.1_epochs_50.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="best region models/region_model_lr_0.00035_step_10_gamma_0.1_epochs_50.pth"),
30
+ "best region models/region_model_lr_0.0005_step_10_gamma_0.1_epochs_50.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="best region models/region_model_lr_0.0005_step_10_gamma_0.1_epochs_50.pth"),
31
+ "best region models/region_model_lr_0.0005_step_10_gamma_0.1_epochs_60.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="best region models/region_model_lr_0.0005_step_10_gamma_0.1_epochs_60.pth"),
32
+ "best region models/region_model_lr_0.002_step_10_gamma_0.1_epochs_100.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="best region models/region_model_lr_0.002_step_10_gamma_0.1_epochs_100.pth"),
33
+ "best region models/model_histories.json" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="best region models/model_histories.json"),
34
+ "models/location_model_0.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="models/location_model_0.pth"),
35
+ "models/location_model_1.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="models/location_model_1.pth"),
36
+ "models/location_model_2.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="models/location_model_2.pth"),
37
+ "models/location_model_3.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="models/location_model_3.pth"),
38
+ "models/location_model_4.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="models/location_model_4.pth"),
39
+ "models/location_model_5.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="models/location_model_5.pth"),
40
+ "models/location_model_6.pth" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="models/location_model_6.pth"),
41
+ "region_ensemble_weights.json" : hf_hub_download(repo_id="IanAndJohn/region_ensemble_model", filename="region_ensemble_weights.json")}
42
+
43
+ ##############
44
+ import torch
45
+ import torch.nn as nn
46
+ import torchvision.transforms as transforms
47
+ from torch.utils.data import DataLoader, Dataset
48
+ from transformers import AutoImageProcessor, AutoModelForImageClassification
49
+ from huggingface_hub import PyTorchModelHubMixin
50
+ from PIL import Image
51
+ import os
52
+ import numpy as np
53
+
54
+ class PredictedObject():
55
+ def __init__(self, image, lat, lon, region, original_lat=None, original_lon=None):
56
+ self.lat = lat
57
+ self.lon = lon
58
+ self.region = region
59
+ self.image = image
60
+
61
+ if original_lat is None or original_lon is None:
62
+ self.original_lat = lat
63
+ self.original_lon = lon
64
+ else:
65
+ self.original_lat = original_lat
66
+ self.original_lon = original_lon
67
+
68
+ self.predicted_region = None
69
+ self.predicted_lat = None
70
+ self.predicted_lon = None
71
+
72
+ def __lt__(self, other):
73
+ return self.predicted_region < other.predicted_region
74
+
75
+ def __eq__(self, other):
76
+ return self.predicted_region == other.predicted_region
77
+
78
+ class PredictionObjectDataset(Dataset):
79
+ def __init__(self, object_lst, transform=None, lat_mean=None, lat_std=None, lon_mean=None, lon_std=None, useRegions=False, give_originals=False):
80
+ self.object_lst = object_lst
81
+ self.transform = transform
82
+ self.useRegions = useRegions
83
+ self.give_originals = give_originals
84
+
85
+ # Compute mean and std from the dataframe if not provided
86
+ if (len(self.object_lst) == 1):
87
+ self.latitude_mean = self.object_lst[0].lat
88
+ self.latitude_std = 1
89
+ self.longitude_mean = self.object_lst[0].lon
90
+ self.longitude_std = 1
91
+ else:
92
+ self.latitude_mean = lat_mean if lat_mean is not None else np.mean(np.array([x.lat for x in self.object_lst]))
93
+ self.latitude_std = lat_std if lat_std is not None else np.std(np.array([x.lat for x in self.object_lst]))
94
+ self.longitude_mean = lon_mean if lon_mean is not None else np.mean(np.array([x.lon for x in self.object_lst]))
95
+ self.longitude_std = lon_std if lon_std is not None else np.std(np.array([x.lon for x in self.object_lst]))
96
+
97
+ self.normalize()
98
+
99
+ def normalize(self):
100
+ new_object_lst = []
101
+ for obj in self.object_lst:
102
+ obj.lat = (obj.lat - self.latitude_mean) / self.latitude_std
103
+ obj.lon = (obj.lon - self.longitude_mean) / self.longitude_std
104
+ new_object_lst.append(obj)
105
+ self.object_lst = new_object_lst
106
+
107
+ def __len__(self):
108
+ return len(self.object_lst)
109
+
110
+ def __getitem__(self, idx):
111
+ # Extract data
112
+ example = self.object_lst[idx]
113
+
114
+ # Load and process the image
115
+ image = example.image
116
+ latitude = example.lat
117
+ longitude = example.lon
118
+ region = example.region
119
+
120
+ # image = image.rotate(-90, expand=True)
121
+ if self.transform:
122
+ image = self.transform(image)
123
+
124
+ # Normalize GPS coordinates
125
+ gps_coords = torch.tensor([latitude, longitude], dtype=torch.float32)
126
+ gps_coords_orginal = torch.tensor([example.original_lat, example.original_lon], dtype=torch.float32)
127
+
128
+ if self.useRegions and self.give_originals:
129
+ return image, gps_coords, gps_coords_orginal, region
130
+ elif self.useRegions:
131
+ return image, gps_coords, region
132
+ elif self.give_originals:
133
+ return image, gps_coords, gps_coords_orginal
134
+ else:
135
+ return image, gps_coords
136
+
137
+ class TensorDataset(Dataset):
138
+ def __init__(self, tensors, transform=None, lat_mean=None, lat_std=None, lon_mean=None, lon_std=None, useRegions=False, give_originals=False):
139
+ # self.hf_dataset = hf_dataset.map(
140
+ self.tensors = tensors
141
+
142
+ def __len__(self):
143
+ return len(self.tensors)
144
+
145
+ def __getitem__(self, idx):
146
+ # Extract data
147
+ image = self.tensors[idx]
148
+ return image
149
+ ##################
150
+ transform = transforms.Compose([
151
+ #transforms.RandomResizedCrop(224), # Random crop and resize to 224x224
152
+ transforms.Resize((224, 224)),
153
+ transforms.RandomHorizontalFlip(), # Random horizontal flip
154
+ # transforms.RandomRotation(degrees=15), # Random rotation between -15 and 15 degrees
155
+ transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1), # Random color jitter
156
+ transforms.ToTensor(),
157
+ transforms.Normalize(mean=[0.485, 0.456, 0.406],
158
+ std=[0.229, 0.224, 0.225])
159
+ ])
160
+
161
+ # Optionally, you can create a separate transform for inference without augmentations
162
+ inference_transform = transforms.Compose([
163
+ transforms.Resize((224, 224)),
164
+ transforms.ToTensor(),
165
+ transforms.Normalize(mean=[0.485, 0.456, 0.406],
166
+ std=[0.229, 0.224, 0.225])
167
+ ])
168
+
169
+
170
+ # Create the training dataset and dataloader
171
+ train_dataset = TensorDataset(input_tensor)
172
+ train_dataloader = DataLoader(train_dataset, batch_size=32, shuffle=True)
173
+
174
+ # lat_mean = train_dataset.latitude_mean
175
+ # lat_std = train_dataset.latitude_std
176
+ # lon_mean = train_dataset.longitude_mean
177
+ # lon_std = train_dataset.longitude_std
178
+
179
+ #####################
180
+ import torch
181
+ import torch.nn as nn
182
+ import torchvision.transforms as transforms
183
+ from torch.utils.data import DataLoader, Dataset
184
+ from transformers import AutoImageProcessor, AutoModelForImageClassification
185
+ from huggingface_hub import PyTorchModelHubMixin
186
+ from PIL import Image
187
+ import os
188
+ import numpy as np
189
+ import json
190
+ import torchvision.models as models
191
+ ##################
192
+ import torch.nn.functional as F
193
+ class_frequency = torch.zeros(7)
194
+
195
+ region_one_hot = F.one_hot(torch.tensor([0,1,2,3,4,5,6]), num_classes=7)
196
+
197
+ # for _, _, region in train_dataset:
198
+ # class_frequency += region_one_hot[region]
199
+
200
+ # print(class_frequency)
201
+ # class_weights = torch.full((7,), len(train_dataset)) / class_frequency
202
+ # class_weights = class_weights / torch.max(class_weights)
203
+ # print(class_weights)
204
+ class_weights = [0.2839, 0.4268, 0.5583, 0.3873, 1.0000, 0.6036, 0.6009]
205
+ #####################
206
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
207
+ print(f'Using device: {device}')
208
+
209
+ per_model_weights = []
210
+ with open(path_map['region_ensemble_weights.json'], 'r') as file:
211
+ per_model_weights = json.load(file)
212
+
213
+ search_stats = []
214
+ with open(path_map['best region models/model_histories.json'], 'r') as file:
215
+ search_stats = json.load(file)
216
+
217
+ my_models = []
218
+
219
+ for i, (path, _, _, _, _, _, _, _, _) in enumerate(search_stats):
220
+ path = path_map[path]
221
+ state_dict = torch.load(path)
222
+
223
+ region_model = models.resnet18(pretrained=False)
224
+ num_features = region_model.fc.in_features
225
+ region_model.fc = nn.Sequential(nn.Dropout(0.5),
226
+ nn.Linear(num_features, 7))
227
+ region_model.load_state_dict(state_dict)
228
+
229
+ region_model.cpu()
230
+
231
+ my_models.append(region_model)
232
+
233
+ per_model_weights = torch.tensor(per_model_weights).to(device)
234
+ #########
235
+ torch.cuda.empty_cache()
236
+ ##########
237
+ predicted_object_lst = []
238
+
239
+ num_regions = 7
240
+
241
+ for images in train_dataloader:
242
+ images = images.to(device)
243
+ # gps_coords_original = gps_coords_original.to(device)
244
+
245
+ outputs = torch.zeros((images.shape[0], 7)).to(device)
246
+
247
+ for i, model in enumerate(my_models):
248
+ model.eval()
249
+ model.to(device)
250
+
251
+ model_outputs = model(images)
252
+ outputs += per_model_weights[i] * model_outputs
253
+
254
+ model.cpu()
255
+ # print(i, len(predicted_object_lst))
256
+
257
+ outputs /= len(my_models)
258
+
259
+ _, predicted_regions = torch.max(outputs, 1)
260
+
261
+ predicted_regions = predicted_regions.cpu().numpy()
262
+ images = images.cpu().numpy()
263
+
264
+ for i in range(len(predicted_regions)):
265
+ predicted_object = PredictedObject(images[i], -1, -1, predicted_regions[i])
266
+ predicted_object.predicted_region = predicted_regions[i]
267
+ predicted_object_lst.append(predicted_object)
268
+
269
+ torch.cuda.empty_cache()
270
+ #################
271
+ predicted_object_lst = sorted(predicted_object_lst)
272
+
273
+ po_predicted_region_lst = [[] for _ in range(7)]
274
+
275
+ for po in predicted_object_lst:
276
+ po.lat = po.original_lat
277
+ po.lon = po.original_lon
278
+
279
+ po_predicted_region_lst[po.predicted_region].append(po)
280
+
281
+ po_datasets = [PredictionObjectDataset(x, give_originals=True) for x in po_predicted_region_lst]
282
+ po_loaders = [DataLoader(x, batch_size=32, shuffle=False) for x in po_datasets]
283
+
284
+ # lat_mean_lst = [x.latitude_mean for x in po_datasets]
285
+ # lat_std_lst = [x.latitude_std for x in po_datasets]
286
+ # lon_mean_lst = [x.longitude_mean for x in po_datasets]
287
+ # lon_std_lst = [x.longitude_std for x in po_datasets]
288
+
289
+ ############
290
+ from sklearn.metrics import mean_absolute_error, mean_squared_error
291
+ import torch.nn.functional as F
292
+
293
+ # all_preds = []
294
+ # all_actuals = []
295
+ all_preds_norm = []
296
+ # all_actuals_norm = []
297
+ # all_regions = []
298
+
299
+ for i in range(num_regions):
300
+ # print(f'region {i}')
301
+ # model_all_preds = []
302
+ # model_all_actuals = []
303
+ model_all_preds_norm = []
304
+ # model_all_actuals_norm = []
305
+ # model_all_regions = []
306
+
307
+ val_dataloader = po_loaders[i]
308
+
309
+ state_dict = torch.load(path_map[f'models/location_model_{i}.pth'])
310
+
311
+ model_loction = models.resnet18(pretrained=False)
312
+ num_features = model_loction.fc.in_features
313
+ model_loction.fc = nn.Linear(num_features, 2)
314
+
315
+ model_loction.load_state_dict(state_dict)
316
+
317
+ model_loction.to(device)
318
+
319
+ model_loction.eval()
320
+ with torch.no_grad():
321
+ for images, _, _ in val_dataloader:
322
+ images = images.to(device)
323
+
324
+ outputs = model_loction(images)
325
+
326
+ # Denormalize predictions and actual values
327
+ preds_norm = outputs.cpu()
328
+ # actuals_norm = gps_coords.cpu()
329
+ # preds = outputs.cpu() * torch.tensor([lat_std_lst[i], lon_std_lst[i]]) + torch.tensor([lat_mean_lst[i], lon_mean_lst[i]])
330
+ # actuals = gps_coords.cpu() * torch.tensor([lat_std_lst[i], lon_std_lst[i]]) + torch.tensor([lat_mean_lst[i], lon_mean_lst[i]])#gps_coords_original.cpu()
331
+
332
+ # model_all_preds.append(preds)
333
+ # model_all_actuals.append(actuals)
334
+ model_all_preds_norm.append(preds_norm)
335
+ # model_all_actuals_norm.append(actuals_norm)
336
+ # model_all_regions.extend([i for _ in range(len(images))])
337
+
338
+ # Concatenate all batches
339
+ # model_all_preds = torch.cat(model_all_preds)
340
+ # model_all_actuals = torch.cat(model_all_actuals)
341
+ model_all_preds_norm = torch.cat(model_all_preds_norm)
342
+ # model_all_actuals_norm = torch.cat(model_all_actuals_norm)
343
+
344
+
345
+ # Compute error metrics
346
+ # rmse = F.mse_loss(model_all_actuals_norm, model_all_preds_norm)
347
+
348
+ # model_all_preds = model_all_preds.numpy()
349
+ # model_all_actuals = model_all_actuals.numpy()
350
+ model_all_preds_norm = model_all_preds_norm.numpy()
351
+ # model_all_actuals_norm = model_all_actuals_norm.numpy()
352
+
353
+ # print(model_all_preds[0])
354
+ # print(model_all_actuals[0])
355
+ # print(model_all_preds_norm[0])
356
+ # print(model_all_actuals_norm[0])
357
+
358
+ # print(f'Mean Squared Error: {rmse}')
359
+
360
+ # all_preds.append([model_all_preds])
361
+ # all_actuals.append([model_all_actuals])
362
+ all_preds_norm.append([model_all_preds_norm])
363
+ # all_actuals_norm.append([model_all_actuals_norm])
364
+ # all_regions.append(model_all_regions)
365
+
366
+ del model_loction
367
+ torch.cuda.empty_cache()
368
+ ############
369
+ # all_preds_denorm = all_preds
370
+ # all_actuals_denorm = all_actuals
371
+ all_preds = all_preds_norm
372
+ # all_actuals = all_actuals_norm
373
+ # all_regions = all_regions
374
+
375
+ def flatten(lst):
376
+ newlst = []
377
+ for sublst in lst:
378
+ for item in sublst:
379
+ newlst.append(item)
380
+ return newlst
381
+
382
+ all_preds = flatten(all_preds)
383
+ # all_actuals = flatten(all_actuals)
384
+ # all_preds_denorm = flatten(all_preds_denorm)
385
+ # all_actuals_denorm = flatten(all_actuals_denorm)
386
+ # all_regions = list(flatten(all_regions))
387
+ #############
388
+ # actual_denorm_y = []
389
+ # actual_denorm_x = []
390
+ # for x in all_actuals_denorm:
391
+ # for e in x:
392
+ # actual_denorm_x.append(e[0])
393
+ # actual_denorm_y.append(e[1])
394
+ # # actual_denorm_x.append(x[0])
395
+ # # actual_denorm_y.append(x[1])
396
+
397
+ # pred_denorm_y = []
398
+ # pred_denorm_x = []
399
+ # for x in all_preds_denorm:
400
+ # for e in x:
401
+ # pred_denorm_x.append(e[0])
402
+ # pred_denorm_y.append(e[1])
403
+ # # pred_denorm_x.append(x[0])
404
+ # # pred_denorm_y.append(x[1])
405
+
406
+ # actual_y = []
407
+ # actual_x = []
408
+ # for x in all_actuals:
409
+ # for e in x:
410
+ # actual_x.append(e[0])
411
+ # actual_y.append(e[1])
412
+ # # actual_x.append(x[0])
413
+ # # actual_y.append(x[1])
414
+
415
+ pred_y = []
416
+ pred_x = []
417
+ for x in all_preds:
418
+ for e in x:
419
+ pred_x.append(e[0])
420
+ pred_y.append(e[1])
421
+ ############
422
+ t = torch.zeros((len(pred_x), 2))
423
+ t[:, 0] = torch.tensor(pred_x)
424
+ t[:, 1] = torch.tensor(pred_y)
425
+ return t
426
+
427
+ # import matplotlib.pyplot as plt
428
+ # from geopy.distance import geodesic
429
+ # import seaborn as sns
430
+
431
+ # print(pred_x)
432
+ # print(pred_y)
433
+ # print(actual_x)
434
+ # print(actual_y)
435
+ # print(pred_denorm_x)
436
+ # print(pred_denorm_y)
437
+ # print(actual_denorm_x)
438
+ # print(actual_denorm_y)
439
+
440
+ # plt.scatter(actual_denorm_y, actual_denorm_x, label='Actual', color='black', alpha=0.5)
441
+ # # plt.scatter(all_preds_denorm[:, 1], all_preds_denorm[:, 0], label='Predicted', color='blue', alpha=0.5)
442
+
443
+ # over100 = 0
444
+ # under100 = 0
445
+ # under50 = 0
446
+ # under25 = 0
447
+
448
+ # all_over100 = []
449
+ # all_under100 = []
450
+ # all_under50 = []
451
+ # all_under25 = []
452
+ # average_dist = 0.0
453
+
454
+ # dists = []
455
+
456
+ # for i in range(len(actual_denorm_x)):
457
+ # pred_denorm_loc = (pred_denorm_x[i], pred_denorm_y[i])
458
+ # actual_denorm_loc = (actual_denorm_x[i], actual_denorm_y[i])
459
+
460
+ # dist = geodesic(actual_denorm_loc, pred_denorm_loc).meters
461
+ # dists.append(dist)
462
+
463
+ # if dist > 50:
464
+ # over100 += 1
465
+ # all_over100.append(pred_denorm_loc)
466
+ # elif dist > 25:
467
+ # under100 += 1
468
+ # all_under100.append(pred_denorm_loc)
469
+ # elif dist > 10:
470
+ # under50 += 1
471
+ # all_under50.append(pred_denorm_loc)
472
+ # else:
473
+ # under25 += 1
474
+ # all_under25.append(pred_denorm_loc)
475
+
476
+ # plt.plot(
477
+ # [actual_denorm_y[i], pred_denorm_y[i]],
478
+ # [actual_denorm_x[i], pred_denorm_x[i]],
479
+ # color='grey',
480
+ # alpha=0.5,
481
+ # linewidth=0.5
482
+ # )
483
+
484
+ # dists = np.array(dists)
485
+
486
+ # plt.scatter([y for x,y in all_over100], [x for x,y in all_over100], label=f'over 50m: {over100}', color='red', alpha=0.5)
487
+ # plt.scatter([y for x,y in all_under100], [x for x,y in all_under100], label=f'under 50m: {under100}', color='orange', alpha=0.5)
488
+ # plt.scatter([y for x,y in all_under50], [x for x,y in all_under50], label=f'under 25m: {under50}', color='green', alpha=0.5)
489
+ # plt.scatter([y for x,y in all_under25], [x for x,y in all_under25], label=f'under 10m: {under25}', color='blue', alpha=0.5)
490
+
491
+
492
+ # plt.legend()
493
+
494
+ # plt.xlabel('Longitude')
495
+ # plt.ylabel('Latitude')
496
+ # plt.title('Actual vs. Predicted GPS Coordinates with Error Lines')
497
+ # plt.show()
498
+
499
+ # regions_enum = {0 : "fisher bennett",
500
+ # 1 : "outer quad",
501
+ # 2 : "outside football",
502
+ # 3 : "chem building",
503
+ # 4 : "top of walk",
504
+ # 5 : "bottom of walk",
505
+ # 6 : "chem courtyard",
506
+ # 7 : "no assigned region"}
507
+
508
+ # colors = {0:'red',
509
+ # 1:'orange',
510
+ # 2:'yellow',
511
+ # 3:'green',
512
+ # 4:'blue',
513
+ # 5:'purple',
514
+ # 6:'pink',
515
+ # 7:'black'}
516
+
517
+ # for i in range(len(actual_denorm_x)):
518
+
519
+ # plt.plot(
520
+ # [actual_denorm_y[i], pred_denorm_y[i]],
521
+ # [actual_denorm_x[i], pred_denorm_x[i]],
522
+ # color='grey',
523
+ # alpha=0.25,
524
+ # linewidth=0.5
525
+ # )
526
+
527
+ # # plt.scatter([p[0] for p in pts], [p[1] for p in pts], s=15, c=[colors[i] for i in all_regions], edgecolors='black')
528
+ # colors_lst = [colors[i] for i in all_regions]
529
+ # plt.scatter(actual_denorm_y, actual_denorm_x, label='Actual', color=colors_lst, alpha=0.5)
530
+ # plt.scatter(pred_denorm_y, pred_denorm_x, label='Predicted', color=colors_lst, alpha=0.5)
531
+ # # plt.gca().invert_xaxis()
532
+
533
+ # plt.show()
534
+
535
+ # # Plot the distribution
536
+ # plt.figure(figsize=(10, 6))
537
+ # sns.histplot(dists, bins=30, kde=True, color='blue', alpha=0.7)
538
+
539
+ # # Add labels and title
540
+ # plt.title("Distribution of Geodesic Distances (Accuracy of Guesses)")
541
+ # plt.xlabel("Geodesic Distance (meters)")
542
+ # plt.ylabel("Frequency")
543
+
544
+ # # Add mean and median lines for context
545
+ # mean_distance = dists.mean()
546
+ # median_distance = np.median(dists)
547
+ # plt.axvline(mean_distance, color='red', linestyle='--', label=f'Mean: {mean_distance:.2f} meters')
548
+ # plt.axvline(median_distance, color='green', linestyle='--', label=f'Median: {median_distance:.2f} meters')
549
+
550
+ # plt.legend()
551
+ # plt.grid(True)
552
+ # plt.show()
553
+
554
+ torch.cuda.empty_cache()
555
+ predict_from_model(input)
556
+ ```