metadata
base_model: HuggingFaceTB/cosmo2-350M-webinst-sc2
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
datasets:
- argilla/dpo-mix-7k
model-index:
- name: cosmo2-350M-webinst-sc2-dpo-argilla-ep1
results: []
cosmo2-350M-webinst-sc2-dpo-argilla-ep1
This model is a fine-tuned version of HuggingFaceTB/cosmo2-350M-webinst-sc2 on the argilla/dpo-mix-7k dataset. It achieves the following results on the evaluation set:
- Loss: 0.6834
- Rewards/chosen: -0.0086
- Rewards/rejected: -0.0304
- Rewards/accuracies: 0.5938
- Rewards/margins: 0.0218
- Logps/rejected: -418.5675
- Logps/chosen: -442.4709
- Logits/rejected: -0.7106
- Logits/chosen: -0.5211
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1