Hasano20's picture
End of training
01f520b verified
|
raw
history blame
5.25 kB
metadata
license: other
base_model: nvidia/mit-b4
tags:
  - vision
  - image-segmentation
  - generated_from_trainer
model-index:
  - name: segformer_Clean_Set1_95images
    results: []

segformer_Clean_Set1_95images

This model is a fine-tuned version of nvidia/mit-b4 on the Hasano20/Clean_Set1_95images dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0223
  • Mean Iou: 0.6447
  • Mean Accuracy: 0.9824
  • Overall Accuracy: 0.9886
  • Accuracy Background: nan
  • Accuracy Melt: 0.9724
  • Accuracy Substrate: 0.9923
  • Iou Background: 0.0
  • Iou Melt: 0.9458
  • Iou Substrate: 0.9882

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Melt Accuracy Substrate Iou Background Iou Melt Iou Substrate
0.2051 1.1765 20 0.3764 0.3339 0.5766 0.8354 nan 0.1639 0.9894 0.0 0.1612 0.8404
0.3486 2.3529 40 0.1932 0.4595 0.7687 0.8745 nan 0.6000 0.9375 0.0 0.4928 0.8858
0.0831 3.5294 60 0.2016 0.4101 0.6782 0.8792 nan 0.3576 0.9988 0.0 0.3570 0.8732
0.0809 4.7059 80 0.0763 0.5787 0.9243 0.9507 nan 0.8822 0.9664 0.0 0.7830 0.9531
0.0325 5.8824 100 0.0694 0.6028 0.9436 0.9618 nan 0.9146 0.9727 0.0 0.8479 0.9606
0.0279 7.0588 120 0.0460 0.6142 0.9520 0.9712 nan 0.9213 0.9826 0.0 0.8739 0.9686
0.0493 8.2353 140 0.0353 0.6297 0.9648 0.9802 nan 0.9404 0.9893 0.0 0.9092 0.9797
0.0286 9.4118 160 0.0366 0.6261 0.9643 0.9765 nan 0.9449 0.9837 0.0 0.8997 0.9787
0.0463 10.5882 180 0.0258 0.6425 0.9798 0.9879 nan 0.9669 0.9927 0.0 0.9414 0.9862
0.0145 11.7647 200 0.0302 0.6324 0.9652 0.9821 nan 0.9382 0.9922 0.0 0.9162 0.9810
0.0221 12.9412 220 0.0262 0.6379 0.9733 0.9850 nan 0.9547 0.9919 0.0 0.9289 0.9848
0.0109 14.1176 240 0.0236 0.6417 0.9764 0.9869 nan 0.9595 0.9932 0.0 0.9379 0.9871
0.0122 15.2941 260 0.0252 0.6407 0.9812 0.9866 nan 0.9725 0.9898 0.0 0.9358 0.9864
0.0101 16.4706 280 0.0239 0.6417 0.9799 0.9869 nan 0.9686 0.9911 0.0 0.9382 0.9870
0.0113 17.6471 300 0.0231 0.6425 0.9798 0.9874 nan 0.9675 0.9920 0.0 0.9399 0.9875
0.0086 18.8235 320 0.0225 0.6444 0.9826 0.9885 nan 0.9733 0.9919 0.0 0.9451 0.9882
0.0086 20.0 340 0.0223 0.6447 0.9824 0.9886 nan 0.9724 0.9923 0.0 0.9458 0.9882

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.19.2
  • Tokenizers 0.19.1