End of training
Browse files- README.md +81 -196
- config.json +80 -0
- model.safetensors +3 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,199 +1,84 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
##
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: other
|
3 |
+
base_model: nvidia/mit-b4
|
4 |
+
tags:
|
5 |
+
- vision
|
6 |
+
- image-segmentation
|
7 |
+
- generated_from_trainer
|
8 |
+
model-index:
|
9 |
+
- name: segformer_Clean_Set1_95images
|
10 |
+
results: []
|
11 |
---
|
12 |
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# segformer_Clean_Set1_95images
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [nvidia/mit-b4](https://huggingface.co/nvidia/mit-b4) on the Hasano20/Clean_Set1_95images dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.0223
|
21 |
+
- Mean Iou: 0.6447
|
22 |
+
- Mean Accuracy: 0.9824
|
23 |
+
- Overall Accuracy: 0.9886
|
24 |
+
- Accuracy Background: nan
|
25 |
+
- Accuracy Melt: 0.9724
|
26 |
+
- Accuracy Substrate: 0.9923
|
27 |
+
- Iou Background: 0.0
|
28 |
+
- Iou Melt: 0.9458
|
29 |
+
- Iou Substrate: 0.9882
|
30 |
+
|
31 |
+
## Model description
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Intended uses & limitations
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training and evaluation data
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training procedure
|
44 |
+
|
45 |
+
### Training hyperparameters
|
46 |
+
|
47 |
+
The following hyperparameters were used during training:
|
48 |
+
- learning_rate: 0.0001
|
49 |
+
- train_batch_size: 4
|
50 |
+
- eval_batch_size: 4
|
51 |
+
- seed: 42
|
52 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
53 |
+
- lr_scheduler_type: linear
|
54 |
+
- num_epochs: 20
|
55 |
+
|
56 |
+
### Training results
|
57 |
+
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Melt | Accuracy Substrate | Iou Background | Iou Melt | Iou Substrate |
|
59 |
+
|:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:------------------:|:--------------:|:--------:|:-------------:|
|
60 |
+
| 0.2051 | 1.1765 | 20 | 0.3764 | 0.3339 | 0.5766 | 0.8354 | nan | 0.1639 | 0.9894 | 0.0 | 0.1612 | 0.8404 |
|
61 |
+
| 0.3486 | 2.3529 | 40 | 0.1932 | 0.4595 | 0.7687 | 0.8745 | nan | 0.6000 | 0.9375 | 0.0 | 0.4928 | 0.8858 |
|
62 |
+
| 0.0831 | 3.5294 | 60 | 0.2016 | 0.4101 | 0.6782 | 0.8792 | nan | 0.3576 | 0.9988 | 0.0 | 0.3570 | 0.8732 |
|
63 |
+
| 0.0809 | 4.7059 | 80 | 0.0763 | 0.5787 | 0.9243 | 0.9507 | nan | 0.8822 | 0.9664 | 0.0 | 0.7830 | 0.9531 |
|
64 |
+
| 0.0325 | 5.8824 | 100 | 0.0694 | 0.6028 | 0.9436 | 0.9618 | nan | 0.9146 | 0.9727 | 0.0 | 0.8479 | 0.9606 |
|
65 |
+
| 0.0279 | 7.0588 | 120 | 0.0460 | 0.6142 | 0.9520 | 0.9712 | nan | 0.9213 | 0.9826 | 0.0 | 0.8739 | 0.9686 |
|
66 |
+
| 0.0493 | 8.2353 | 140 | 0.0353 | 0.6297 | 0.9648 | 0.9802 | nan | 0.9404 | 0.9893 | 0.0 | 0.9092 | 0.9797 |
|
67 |
+
| 0.0286 | 9.4118 | 160 | 0.0366 | 0.6261 | 0.9643 | 0.9765 | nan | 0.9449 | 0.9837 | 0.0 | 0.8997 | 0.9787 |
|
68 |
+
| 0.0463 | 10.5882 | 180 | 0.0258 | 0.6425 | 0.9798 | 0.9879 | nan | 0.9669 | 0.9927 | 0.0 | 0.9414 | 0.9862 |
|
69 |
+
| 0.0145 | 11.7647 | 200 | 0.0302 | 0.6324 | 0.9652 | 0.9821 | nan | 0.9382 | 0.9922 | 0.0 | 0.9162 | 0.9810 |
|
70 |
+
| 0.0221 | 12.9412 | 220 | 0.0262 | 0.6379 | 0.9733 | 0.9850 | nan | 0.9547 | 0.9919 | 0.0 | 0.9289 | 0.9848 |
|
71 |
+
| 0.0109 | 14.1176 | 240 | 0.0236 | 0.6417 | 0.9764 | 0.9869 | nan | 0.9595 | 0.9932 | 0.0 | 0.9379 | 0.9871 |
|
72 |
+
| 0.0122 | 15.2941 | 260 | 0.0252 | 0.6407 | 0.9812 | 0.9866 | nan | 0.9725 | 0.9898 | 0.0 | 0.9358 | 0.9864 |
|
73 |
+
| 0.0101 | 16.4706 | 280 | 0.0239 | 0.6417 | 0.9799 | 0.9869 | nan | 0.9686 | 0.9911 | 0.0 | 0.9382 | 0.9870 |
|
74 |
+
| 0.0113 | 17.6471 | 300 | 0.0231 | 0.6425 | 0.9798 | 0.9874 | nan | 0.9675 | 0.9920 | 0.0 | 0.9399 | 0.9875 |
|
75 |
+
| 0.0086 | 18.8235 | 320 | 0.0225 | 0.6444 | 0.9826 | 0.9885 | nan | 0.9733 | 0.9919 | 0.0 | 0.9451 | 0.9882 |
|
76 |
+
| 0.0086 | 20.0 | 340 | 0.0223 | 0.6447 | 0.9824 | 0.9886 | nan | 0.9724 | 0.9923 | 0.0 | 0.9458 | 0.9882 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.41.2
|
82 |
+
- Pytorch 2.0.1+cu117
|
83 |
+
- Datasets 2.19.2
|
84 |
+
- Tokenizers 0.19.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nvidia/mit-b4",
|
3 |
+
"architectures": [
|
4 |
+
"SegformerForSemanticSegmentation"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"classifier_dropout_prob": 0.1,
|
8 |
+
"decoder_hidden_size": 768,
|
9 |
+
"depths": [
|
10 |
+
3,
|
11 |
+
8,
|
12 |
+
27,
|
13 |
+
3
|
14 |
+
],
|
15 |
+
"downsampling_rates": [
|
16 |
+
1,
|
17 |
+
4,
|
18 |
+
8,
|
19 |
+
16
|
20 |
+
],
|
21 |
+
"drop_path_rate": 0.1,
|
22 |
+
"hidden_act": "gelu",
|
23 |
+
"hidden_dropout_prob": 0.0,
|
24 |
+
"hidden_sizes": [
|
25 |
+
64,
|
26 |
+
128,
|
27 |
+
320,
|
28 |
+
512
|
29 |
+
],
|
30 |
+
"id2label": {
|
31 |
+
"0": "background",
|
32 |
+
"1": "melt",
|
33 |
+
"2": "substrate"
|
34 |
+
},
|
35 |
+
"image_size": 224,
|
36 |
+
"initializer_range": 0.02,
|
37 |
+
"label2id": {
|
38 |
+
"background": 0,
|
39 |
+
"melt": 1,
|
40 |
+
"substrate": 2
|
41 |
+
},
|
42 |
+
"layer_norm_eps": 1e-06,
|
43 |
+
"mlp_ratios": [
|
44 |
+
4,
|
45 |
+
4,
|
46 |
+
4,
|
47 |
+
4
|
48 |
+
],
|
49 |
+
"model_type": "segformer",
|
50 |
+
"num_attention_heads": [
|
51 |
+
1,
|
52 |
+
2,
|
53 |
+
5,
|
54 |
+
8
|
55 |
+
],
|
56 |
+
"num_channels": 3,
|
57 |
+
"num_encoder_blocks": 4,
|
58 |
+
"patch_sizes": [
|
59 |
+
7,
|
60 |
+
3,
|
61 |
+
3,
|
62 |
+
3
|
63 |
+
],
|
64 |
+
"reshape_last_stage": true,
|
65 |
+
"semantic_loss_ignore_index": 255,
|
66 |
+
"sr_ratios": [
|
67 |
+
8,
|
68 |
+
4,
|
69 |
+
2,
|
70 |
+
1
|
71 |
+
],
|
72 |
+
"strides": [
|
73 |
+
4,
|
74 |
+
2,
|
75 |
+
2,
|
76 |
+
2
|
77 |
+
],
|
78 |
+
"torch_dtype": "float32",
|
79 |
+
"transformers_version": "4.41.2"
|
80 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1c9354e49841467bf7320e76b090fc2e845cb6a572075c2d00f645042b08d52
|
3 |
+
size 256100204
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33824043b4e43e04d4278db8cfb05888b53a2511bb76f1fee56c032ba8f4e92a
|
3 |
+
size 4667
|