GuiTap's picture
End of training
dd9cd68 verified
metadata
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
  - generated_from_trainer
datasets:
  - lener_br
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: xlm-roberta-large-finetuned-ner-lenerBr
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: lener_br
          type: lener_br
          config: lener_br
          split: validation
          args: lener_br
        metrics:
          - name: Precision
            type: precision
            value: 0.9166029074215761
          - name: Recall
            type: recall
            value: 0.9289222021194107
          - name: F1
            type: f1
            value: 0.9227214377406933
          - name: Accuracy
            type: accuracy
            value: 0.9853721218641206

xlm-roberta-large-finetuned-ner-lenerBr

This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the lener_br dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Precision: 0.9166
  • Recall: 0.9289
  • F1: 0.9227
  • Accuracy: 0.9854

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.9995 489 nan 0.8191 0.8167 0.8179 0.9751
0.163 1.9990 978 nan 0.8600 0.9080 0.8833 0.9790
0.0427 2.9985 1467 nan 0.8736 0.9163 0.8944 0.9814
0.0279 4.0 1957 nan 0.8688 0.9191 0.8932 0.9801
0.019 4.9995 2446 nan 0.9123 0.9196 0.9159 0.9840
0.0143 5.9990 2935 nan 0.9008 0.9346 0.9174 0.9842
0.0112 6.9985 3424 nan 0.9063 0.9250 0.9156 0.9843
0.0072 8.0 3914 nan 0.8954 0.9315 0.9131 0.9841
0.0065 8.9995 4403 nan 0.9226 0.9245 0.9236 0.9857
0.0048 9.9949 4890 nan 0.9166 0.9289 0.9227 0.9854

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3