xlm-roberta-large-finetuned-ner-lenerBr
This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the lener_br dataset. It achieves the following results on the evaluation set:
- Loss: nan
- Precision: 0.9166
- Recall: 0.9289
- F1: 0.9227
- Accuracy: 0.9854
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.9995 | 489 | nan | 0.8191 | 0.8167 | 0.8179 | 0.9751 |
0.163 | 1.9990 | 978 | nan | 0.8600 | 0.9080 | 0.8833 | 0.9790 |
0.0427 | 2.9985 | 1467 | nan | 0.8736 | 0.9163 | 0.8944 | 0.9814 |
0.0279 | 4.0 | 1957 | nan | 0.8688 | 0.9191 | 0.8932 | 0.9801 |
0.019 | 4.9995 | 2446 | nan | 0.9123 | 0.9196 | 0.9159 | 0.9840 |
0.0143 | 5.9990 | 2935 | nan | 0.9008 | 0.9346 | 0.9174 | 0.9842 |
0.0112 | 6.9985 | 3424 | nan | 0.9063 | 0.9250 | 0.9156 | 0.9843 |
0.0072 | 8.0 | 3914 | nan | 0.8954 | 0.9315 | 0.9131 | 0.9841 |
0.0065 | 8.9995 | 4403 | nan | 0.9226 | 0.9245 | 0.9236 | 0.9857 |
0.0048 | 9.9949 | 4890 | nan | 0.9166 | 0.9289 | 0.9227 | 0.9854 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 80
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for GuiTap/xlm-roberta-large-finetuned-ner-lenerBr
Base model
FacebookAI/xlm-roberta-largeDataset used to train GuiTap/xlm-roberta-large-finetuned-ner-lenerBr
Evaluation results
- Precision on lener_brvalidation set self-reported0.917
- Recall on lener_brvalidation set self-reported0.929
- F1 on lener_brvalidation set self-reported0.923
- Accuracy on lener_brvalidation set self-reported0.985