|
--- |
|
base_model: google/pegasus-xsum |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- samsum |
|
metrics: |
|
- rouge |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: Pegasus_xsum_samsum |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: samsum |
|
type: samsum |
|
config: samsum |
|
split: validation |
|
args: samsum |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 0.5072 |
|
- name: Precision |
|
type: precision |
|
value: 0.9247 |
|
- name: Recall |
|
type: recall |
|
value: 0.9099 |
|
- name: F1 |
|
type: f1 |
|
value: 0.917 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Pegasus_xsum_samsum |
|
|
|
This model is a fine-tuned version of [google/pegasus-xsum](https://huggingface.co/google/pegasus-xsum) on the samsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.4709 |
|
- Rouge1: 0.5072 |
|
- Rouge2: 0.2631 |
|
- Rougel: 0.4243 |
|
- Rougelsum: 0.4244 |
|
- Gen Len: 19.1479 |
|
- Precision: 0.9247 |
|
- Recall: 0.9099 |
|
- F1: 0.917 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:---------:|:------:|:------:| |
|
| 1.9542 | 1.0 | 920 | 1.5350 | 0.4928 | 0.2436 | 0.4085 | 0.4086 | 18.5672 | 0.9229 | 0.9074 | 0.9149 | |
|
| 1.6331 | 2.0 | 1841 | 1.4914 | 0.5037 | 0.257 | 0.4202 | 0.4206 | 18.8154 | 0.9246 | 0.9092 | 0.9166 | |
|
| 1.5694 | 3.0 | 2762 | 1.4761 | 0.5071 | 0.259 | 0.4212 | 0.4214 | 19.4487 | 0.9241 | 0.9103 | 0.917 | |
|
| 1.5374 | 4.0 | 3680 | 1.4709 | 0.5072 | 0.2631 | 0.4243 | 0.4244 | 19.1479 | 0.9247 | 0.9099 | 0.917 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.15.0 |
|
|