Pegasus_xsum_samsum / README.md
GlycerinLOL's picture
Model save
c33e842 verified
metadata
base_model: google/pegasus-xsum
tags:
  - generated_from_trainer
datasets:
  - samsum
metrics:
  - rouge
  - precision
  - recall
  - f1
model-index:
  - name: Pegasus_xsum_samsum
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: samsum
          type: samsum
          config: samsum
          split: validation
          args: samsum
        metrics:
          - name: Rouge1
            type: rouge
            value: 0.5072
          - name: Precision
            type: precision
            value: 0.9247
          - name: Recall
            type: recall
            value: 0.9099
          - name: F1
            type: f1
            value: 0.917

Pegasus_xsum_samsum

This model is a fine-tuned version of google/pegasus-xsum on the samsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4709
  • Rouge1: 0.5072
  • Rouge2: 0.2631
  • Rougel: 0.4243
  • Rougelsum: 0.4244
  • Gen Len: 19.1479
  • Precision: 0.9247
  • Recall: 0.9099
  • F1: 0.917

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len Precision Recall F1
1.9542 1.0 920 1.5350 0.4928 0.2436 0.4085 0.4086 18.5672 0.9229 0.9074 0.9149
1.6331 2.0 1841 1.4914 0.5037 0.257 0.4202 0.4206 18.8154 0.9246 0.9092 0.9166
1.5694 3.0 2762 1.4761 0.5071 0.259 0.4212 0.4214 19.4487 0.9241 0.9103 0.917
1.5374 4.0 3680 1.4709 0.5072 0.2631 0.4243 0.4244 19.1479 0.9247 0.9099 0.917

Framework versions

  • Transformers 4.36.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.15.0