|
--- |
|
base_model: Snowflake/snowflake-arctic-embed-m |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
- dot_accuracy@1 |
|
- dot_accuracy@3 |
|
- dot_accuracy@5 |
|
- dot_accuracy@10 |
|
- dot_precision@1 |
|
- dot_precision@3 |
|
- dot_precision@5 |
|
- dot_precision@10 |
|
- dot_recall@1 |
|
- dot_recall@3 |
|
- dot_recall@5 |
|
- dot_recall@10 |
|
- dot_ndcg@10 |
|
- dot_mrr@10 |
|
- dot_map@100 |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:600 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: What types of additional risks might future updates incorporate? |
|
sentences: |
|
- Inaccuracies in these labels can impact the “stability” or robustness of these |
|
benchmarks, which many GAI practitioners consider during the model selection process. |
|
- For example, when prompted to generate images of CEOs, doctors, lawyers, and judges, |
|
current text-to-image models underrepresent women and/or racial minorities , and |
|
people with disabilities . |
|
- Future updates may incorporate additional risks or provide further details on |
|
the risks identified below. |
|
- source_sentence: What are some potential consequences of the abuse and misuse of |
|
AI systems by humans? |
|
sentences: |
|
- Even when trained on “clean” data, increasingly capable GAI models can synthesize |
|
or produce synthetic NCII and CSAM. |
|
- 3 the abuse, misuse, and unsafe repurposing by humans (adversarial or not ), and |
|
others result from interactions between a human and an AI system. |
|
- Energy and carbon emissions vary based on what is being done with the GAI model |
|
(i.e., pre -training, fine -tuning, inference), the modality of the content , hardware |
|
used, and type of task or application . |
|
- source_sentence: What types of digital content can be included in GAI? |
|
sentences: |
|
- Errors in t hird-party GAI components can also have downstream impacts on accuracy |
|
and robustness . |
|
- In direct prompt injections, attackers might craft malicious prompts and input |
|
them directly to a GAI system , with a variety of downstream negative consequences |
|
to interconnected systems. |
|
- This can include images, videos, audio, text, and other digital content.” While |
|
not all GAI is derived from foundation models, for purposes of this document, |
|
GAI generally refers to generative foundation models . |
|
- source_sentence: What are the implications of harmful bias and homogenization in |
|
relation to stereotypical content? |
|
sentences: |
|
- These risks provide a lens through which organizations can frame and execute risk |
|
management efforts. |
|
- 13 • Not every suggested action appl ies to every AI Actor14 or is relevant to |
|
every AI Actor Task . |
|
- The spread of denigrating or stereotypical content can also further exacerbate |
|
representational harms (see Harmful Bias and Homogenization below). |
|
- source_sentence: What are the inventory exemptions defined in organizational policies |
|
for GAI systems embedded into application software? |
|
sentences: |
|
- Methods for creating smaller versions of train ed models, such as model distillation |
|
or compression, could reduce environmental impacts at inference time, but training |
|
and tuning such models may still contribute to their environmental impacts . |
|
- For example, predictive inferences made by GAI models based on PII or protected |
|
attributes c an contribute to adverse decisions , leading to representational |
|
or allocative harms to individuals or groups (see Harmful Bias and Homogenization |
|
below). |
|
- Information Security GV-1.6-002 Define any inventory exemptions in organizational |
|
policies for GAI systems embedded into application software . |
|
model-index: |
|
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.9 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.98 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.99 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 1.0 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.9 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.3266666666666667 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.19799999999999998 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09999999999999998 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.9 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.98 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.99 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 1.0 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.9563669441556807 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.9417619047619047 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.9417619047619047 |
|
name: Cosine Map@100 |
|
- type: dot_accuracy@1 |
|
value: 0.9 |
|
name: Dot Accuracy@1 |
|
- type: dot_accuracy@3 |
|
value: 0.98 |
|
name: Dot Accuracy@3 |
|
- type: dot_accuracy@5 |
|
value: 0.99 |
|
name: Dot Accuracy@5 |
|
- type: dot_accuracy@10 |
|
value: 1.0 |
|
name: Dot Accuracy@10 |
|
- type: dot_precision@1 |
|
value: 0.9 |
|
name: Dot Precision@1 |
|
- type: dot_precision@3 |
|
value: 0.3266666666666667 |
|
name: Dot Precision@3 |
|
- type: dot_precision@5 |
|
value: 0.19799999999999998 |
|
name: Dot Precision@5 |
|
- type: dot_precision@10 |
|
value: 0.09999999999999998 |
|
name: Dot Precision@10 |
|
- type: dot_recall@1 |
|
value: 0.9 |
|
name: Dot Recall@1 |
|
- type: dot_recall@3 |
|
value: 0.98 |
|
name: Dot Recall@3 |
|
- type: dot_recall@5 |
|
value: 0.99 |
|
name: Dot Recall@5 |
|
- type: dot_recall@10 |
|
value: 1.0 |
|
name: Dot Recall@10 |
|
- type: dot_ndcg@10 |
|
value: 0.9563669441556807 |
|
name: Dot Ndcg@10 |
|
- type: dot_mrr@10 |
|
value: 0.9417619047619047 |
|
name: Dot Mrr@10 |
|
- type: dot_map@100 |
|
value: 0.9417619047619047 |
|
name: Dot Map@100 |
|
--- |
|
|
|
# SentenceTransformer based on Snowflake/snowflake-arctic-embed-m |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision e2b128b9fa60c82b4585512b33e1544224ffff42 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
# Run inference |
|
sentences = [ |
|
'What are the inventory exemptions defined in organizational policies for GAI systems embedded into application software?', |
|
'Information Security GV-1.6-002 Define any inventory exemptions in organizational policies for GAI systems embedded into application software .', |
|
'For example, predictive inferences made by GAI models based on PII or protected attributes c an contribute to adverse decisions , leading to representational or allocative harms to individuals or groups (see Harmful Bias and Homogenization below).', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
|
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.9 | |
|
| cosine_accuracy@3 | 0.98 | |
|
| cosine_accuracy@5 | 0.99 | |
|
| cosine_accuracy@10 | 1.0 | |
|
| cosine_precision@1 | 0.9 | |
|
| cosine_precision@3 | 0.3267 | |
|
| cosine_precision@5 | 0.198 | |
|
| cosine_precision@10 | 0.1 | |
|
| cosine_recall@1 | 0.9 | |
|
| cosine_recall@3 | 0.98 | |
|
| cosine_recall@5 | 0.99 | |
|
| cosine_recall@10 | 1.0 | |
|
| cosine_ndcg@10 | 0.9564 | |
|
| cosine_mrr@10 | 0.9418 | |
|
| **cosine_map@100** | **0.9418** | |
|
| dot_accuracy@1 | 0.9 | |
|
| dot_accuracy@3 | 0.98 | |
|
| dot_accuracy@5 | 0.99 | |
|
| dot_accuracy@10 | 1.0 | |
|
| dot_precision@1 | 0.9 | |
|
| dot_precision@3 | 0.3267 | |
|
| dot_precision@5 | 0.198 | |
|
| dot_precision@10 | 0.1 | |
|
| dot_recall@1 | 0.9 | |
|
| dot_recall@3 | 0.98 | |
|
| dot_recall@5 | 0.99 | |
|
| dot_recall@10 | 1.0 | |
|
| dot_ndcg@10 | 0.9564 | |
|
| dot_mrr@10 | 0.9418 | |
|
| dot_map@100 | 0.9418 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 600 training samples |
|
* Columns: <code>sentence_0</code> and <code>sentence_1</code> |
|
* Approximate statistics based on the first 600 samples: |
|
| | sentence_0 | sentence_1 | |
|
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 7 tokens</li><li>mean: 18.93 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 43.35 tokens</li><li>max: 165 tokens</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | |
|
|:-----------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>What are indirect prompt injections and how can they exploit vulnerabilities?</code> | <code>Security researchers have already demonstrated how indirect prompt injections can exploit vulnerabilities by steal ing proprietary data or running malicious code remotely on a machine.</code> | |
|
| <code>What potential consequences can arise from exploiting vulnerabilities through indirect prompt injections?</code> | <code>Security researchers have already demonstrated how indirect prompt injections can exploit vulnerabilities by steal ing proprietary data or running malicious code remotely on a machine.</code> | |
|
| <code>What factors might organizations consider when tailoring their measurement of GAI risks?</code> | <code>Organizations may choose to tailor how they measure GAI risks based on these characteristics .</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 20 |
|
- `per_device_eval_batch_size`: 20 |
|
- `num_train_epochs`: 5 |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 20 |
|
- `per_device_eval_batch_size`: 20 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 5 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | cosine_map@100 | |
|
|:------:|:----:|:--------------:| |
|
| 1.0 | 30 | 0.9216 | |
|
| 1.6667 | 50 | 0.9292 | |
|
| 2.0 | 60 | 0.9361 | |
|
| 3.0 | 90 | 0.9418 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.11.9 |
|
- Sentence Transformers: 3.1.1 |
|
- Transformers: 4.45.0 |
|
- PyTorch: 2.4.1+cu121 |
|
- Accelerate: 0.34.2 |
|
- Datasets: 3.0.1 |
|
- Tokenizers: 0.20.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |