Galatea007 commited on
Commit
da2d29a
1 Parent(s): 41868d3
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
1_Pooling/config.json:Zone.Identifier ADDED
File without changes
README.md ADDED
@@ -0,0 +1,582 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Snowflake/snowflake-arctic-embed-m
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ - dot_accuracy@1
21
+ - dot_accuracy@3
22
+ - dot_accuracy@5
23
+ - dot_accuracy@10
24
+ - dot_precision@1
25
+ - dot_precision@3
26
+ - dot_precision@5
27
+ - dot_precision@10
28
+ - dot_recall@1
29
+ - dot_recall@3
30
+ - dot_recall@5
31
+ - dot_recall@10
32
+ - dot_ndcg@10
33
+ - dot_mrr@10
34
+ - dot_map@100
35
+ pipeline_tag: sentence-similarity
36
+ tags:
37
+ - sentence-transformers
38
+ - sentence-similarity
39
+ - feature-extraction
40
+ - generated_from_trainer
41
+ - dataset_size:600
42
+ - loss:MatryoshkaLoss
43
+ - loss:MultipleNegativesRankingLoss
44
+ widget:
45
+ - source_sentence: What types of additional risks might future updates incorporate?
46
+ sentences:
47
+ - Inaccuracies in these labels can impact the “stability” or robustness of these
48
+ benchmarks, which many GAI practitioners consider during the model selection process.
49
+ - For example, when prompted to generate images of CEOs, doctors, lawyers, and judges,
50
+ current text-to-image models underrepresent women and/or racial minorities , and
51
+ people with disabilities .
52
+ - Future updates may incorporate additional risks or provide further details on
53
+ the risks identified below.
54
+ - source_sentence: What are some potential consequences of the abuse and misuse of
55
+ AI systems by humans?
56
+ sentences:
57
+ - Even when trained on “clean” data, increasingly capable GAI models can synthesize
58
+ or produce synthetic NCII and CSAM.
59
+ - 3 the abuse, misuse, and unsafe repurposing by humans (adversarial or not ), and
60
+ others result from interactions between a human and an AI system.
61
+ - Energy and carbon emissions vary based on what is being done with the GAI model
62
+ (i.e., pre -training, fine -tuning, inference), the modality of the content , hardware
63
+ used, and type of task or application .
64
+ - source_sentence: What types of digital content can be included in GAI?
65
+ sentences:
66
+ - Errors in t hird-party GAI components can also have downstream impacts on accuracy
67
+ and robustness .
68
+ - In direct prompt injections, attackers might craft malicious prompts and input
69
+ them directly to a GAI system , with a variety of downstream negative consequences
70
+ to interconnected systems.
71
+ - This can include images, videos, audio, text, and other digital content.” While
72
+ not all GAI is derived from foundation models, for purposes of this document,
73
+ GAI generally refers to generative foundation models .
74
+ - source_sentence: What are the implications of harmful bias and homogenization in
75
+ relation to stereotypical content?
76
+ sentences:
77
+ - These risks provide a lens through which organizations can frame and execute risk
78
+ management efforts.
79
+ - 13 • Not every suggested action appl ies to every AI Actor14 or is relevant to
80
+ every AI Actor Task .
81
+ - The spread of denigrating or stereotypical content can also further exacerbate
82
+ representational harms (see Harmful Bias and Homogenization below).
83
+ - source_sentence: What are the inventory exemptions defined in organizational policies
84
+ for GAI systems embedded into application software?
85
+ sentences:
86
+ - Methods for creating smaller versions of train ed models, such as model distillation
87
+ or compression, could reduce environmental impacts at inference time, but training
88
+ and tuning such models may still contribute to their environmental impacts .
89
+ - For example, predictive inferences made by GAI models based on PII or protected
90
+ attributes c an contribute to adverse decisions , leading to representational
91
+ or allocative harms to individuals or groups (see Harmful Bias and Homogenization
92
+ below).
93
+ - Information Security GV-1.6-002 Define any inventory exemptions in organizational
94
+ policies for GAI systems embedded into application software .
95
+ model-index:
96
+ - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
97
+ results:
98
+ - task:
99
+ type: information-retrieval
100
+ name: Information Retrieval
101
+ dataset:
102
+ name: Unknown
103
+ type: unknown
104
+ metrics:
105
+ - type: cosine_accuracy@1
106
+ value: 0.9
107
+ name: Cosine Accuracy@1
108
+ - type: cosine_accuracy@3
109
+ value: 0.98
110
+ name: Cosine Accuracy@3
111
+ - type: cosine_accuracy@5
112
+ value: 0.99
113
+ name: Cosine Accuracy@5
114
+ - type: cosine_accuracy@10
115
+ value: 1.0
116
+ name: Cosine Accuracy@10
117
+ - type: cosine_precision@1
118
+ value: 0.9
119
+ name: Cosine Precision@1
120
+ - type: cosine_precision@3
121
+ value: 0.3266666666666667
122
+ name: Cosine Precision@3
123
+ - type: cosine_precision@5
124
+ value: 0.19799999999999998
125
+ name: Cosine Precision@5
126
+ - type: cosine_precision@10
127
+ value: 0.09999999999999998
128
+ name: Cosine Precision@10
129
+ - type: cosine_recall@1
130
+ value: 0.9
131
+ name: Cosine Recall@1
132
+ - type: cosine_recall@3
133
+ value: 0.98
134
+ name: Cosine Recall@3
135
+ - type: cosine_recall@5
136
+ value: 0.99
137
+ name: Cosine Recall@5
138
+ - type: cosine_recall@10
139
+ value: 1.0
140
+ name: Cosine Recall@10
141
+ - type: cosine_ndcg@10
142
+ value: 0.9563669441556807
143
+ name: Cosine Ndcg@10
144
+ - type: cosine_mrr@10
145
+ value: 0.9417619047619047
146
+ name: Cosine Mrr@10
147
+ - type: cosine_map@100
148
+ value: 0.9417619047619047
149
+ name: Cosine Map@100
150
+ - type: dot_accuracy@1
151
+ value: 0.9
152
+ name: Dot Accuracy@1
153
+ - type: dot_accuracy@3
154
+ value: 0.98
155
+ name: Dot Accuracy@3
156
+ - type: dot_accuracy@5
157
+ value: 0.99
158
+ name: Dot Accuracy@5
159
+ - type: dot_accuracy@10
160
+ value: 1.0
161
+ name: Dot Accuracy@10
162
+ - type: dot_precision@1
163
+ value: 0.9
164
+ name: Dot Precision@1
165
+ - type: dot_precision@3
166
+ value: 0.3266666666666667
167
+ name: Dot Precision@3
168
+ - type: dot_precision@5
169
+ value: 0.19799999999999998
170
+ name: Dot Precision@5
171
+ - type: dot_precision@10
172
+ value: 0.09999999999999998
173
+ name: Dot Precision@10
174
+ - type: dot_recall@1
175
+ value: 0.9
176
+ name: Dot Recall@1
177
+ - type: dot_recall@3
178
+ value: 0.98
179
+ name: Dot Recall@3
180
+ - type: dot_recall@5
181
+ value: 0.99
182
+ name: Dot Recall@5
183
+ - type: dot_recall@10
184
+ value: 1.0
185
+ name: Dot Recall@10
186
+ - type: dot_ndcg@10
187
+ value: 0.9563669441556807
188
+ name: Dot Ndcg@10
189
+ - type: dot_mrr@10
190
+ value: 0.9417619047619047
191
+ name: Dot Mrr@10
192
+ - type: dot_map@100
193
+ value: 0.9417619047619047
194
+ name: Dot Map@100
195
+ ---
196
+
197
+ # SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
198
+
199
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
200
+
201
+ ## Model Details
202
+
203
+ ### Model Description
204
+ - **Model Type:** Sentence Transformer
205
+ - **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision e2b128b9fa60c82b4585512b33e1544224ffff42 -->
206
+ - **Maximum Sequence Length:** 512 tokens
207
+ - **Output Dimensionality:** 768 tokens
208
+ - **Similarity Function:** Cosine Similarity
209
+ <!-- - **Training Dataset:** Unknown -->
210
+ <!-- - **Language:** Unknown -->
211
+ <!-- - **License:** Unknown -->
212
+
213
+ ### Model Sources
214
+
215
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
216
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
217
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
218
+
219
+ ### Full Model Architecture
220
+
221
+ ```
222
+ SentenceTransformer(
223
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
224
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
225
+ (2): Normalize()
226
+ )
227
+ ```
228
+
229
+ ## Usage
230
+
231
+ ### Direct Usage (Sentence Transformers)
232
+
233
+ First install the Sentence Transformers library:
234
+
235
+ ```bash
236
+ pip install -U sentence-transformers
237
+ ```
238
+
239
+ Then you can load this model and run inference.
240
+ ```python
241
+ from sentence_transformers import SentenceTransformer
242
+
243
+ # Download from the 🤗 Hub
244
+ model = SentenceTransformer("sentence_transformers_model_id")
245
+ # Run inference
246
+ sentences = [
247
+ 'What are the inventory exemptions defined in organizational policies for GAI systems embedded into application software?',
248
+ 'Information Security GV-1.6-002 Define any inventory exemptions in organizational policies for GAI systems embedded into application software .',
249
+ 'For example, predictive inferences made by GAI models based on PII or protected attributes c an contribute to adverse decisions , leading to representational or allocative harms to individuals or groups (see Harmful Bias and Homogenization below).',
250
+ ]
251
+ embeddings = model.encode(sentences)
252
+ print(embeddings.shape)
253
+ # [3, 768]
254
+
255
+ # Get the similarity scores for the embeddings
256
+ similarities = model.similarity(embeddings, embeddings)
257
+ print(similarities.shape)
258
+ # [3, 3]
259
+ ```
260
+
261
+ <!--
262
+ ### Direct Usage (Transformers)
263
+
264
+ <details><summary>Click to see the direct usage in Transformers</summary>
265
+
266
+ </details>
267
+ -->
268
+
269
+ <!--
270
+ ### Downstream Usage (Sentence Transformers)
271
+
272
+ You can finetune this model on your own dataset.
273
+
274
+ <details><summary>Click to expand</summary>
275
+
276
+ </details>
277
+ -->
278
+
279
+ <!--
280
+ ### Out-of-Scope Use
281
+
282
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
283
+ -->
284
+
285
+ ## Evaluation
286
+
287
+ ### Metrics
288
+
289
+ #### Information Retrieval
290
+
291
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
292
+
293
+ | Metric | Value |
294
+ |:--------------------|:-----------|
295
+ | cosine_accuracy@1 | 0.9 |
296
+ | cosine_accuracy@3 | 0.98 |
297
+ | cosine_accuracy@5 | 0.99 |
298
+ | cosine_accuracy@10 | 1.0 |
299
+ | cosine_precision@1 | 0.9 |
300
+ | cosine_precision@3 | 0.3267 |
301
+ | cosine_precision@5 | 0.198 |
302
+ | cosine_precision@10 | 0.1 |
303
+ | cosine_recall@1 | 0.9 |
304
+ | cosine_recall@3 | 0.98 |
305
+ | cosine_recall@5 | 0.99 |
306
+ | cosine_recall@10 | 1.0 |
307
+ | cosine_ndcg@10 | 0.9564 |
308
+ | cosine_mrr@10 | 0.9418 |
309
+ | **cosine_map@100** | **0.9418** |
310
+ | dot_accuracy@1 | 0.9 |
311
+ | dot_accuracy@3 | 0.98 |
312
+ | dot_accuracy@5 | 0.99 |
313
+ | dot_accuracy@10 | 1.0 |
314
+ | dot_precision@1 | 0.9 |
315
+ | dot_precision@3 | 0.3267 |
316
+ | dot_precision@5 | 0.198 |
317
+ | dot_precision@10 | 0.1 |
318
+ | dot_recall@1 | 0.9 |
319
+ | dot_recall@3 | 0.98 |
320
+ | dot_recall@5 | 0.99 |
321
+ | dot_recall@10 | 1.0 |
322
+ | dot_ndcg@10 | 0.9564 |
323
+ | dot_mrr@10 | 0.9418 |
324
+ | dot_map@100 | 0.9418 |
325
+
326
+ <!--
327
+ ## Bias, Risks and Limitations
328
+
329
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
330
+ -->
331
+
332
+ <!--
333
+ ### Recommendations
334
+
335
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
336
+ -->
337
+
338
+ ## Training Details
339
+
340
+ ### Training Dataset
341
+
342
+ #### Unnamed Dataset
343
+
344
+
345
+ * Size: 600 training samples
346
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
347
+ * Approximate statistics based on the first 600 samples:
348
+ | | sentence_0 | sentence_1 |
349
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
350
+ | type | string | string |
351
+ | details | <ul><li>min: 7 tokens</li><li>mean: 18.93 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 43.35 tokens</li><li>max: 165 tokens</li></ul> |
352
+ * Samples:
353
+ | sentence_0 | sentence_1 |
354
+ |:-----------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
355
+ | <code>What are indirect prompt injections and how can they exploit vulnerabilities?</code> | <code>Security researchers have already demonstrated how indirect prompt injections can exploit vulnerabilities by steal ing proprietary data or running malicious code remotely on a machine.</code> |
356
+ | <code>What potential consequences can arise from exploiting vulnerabilities through indirect prompt injections?</code> | <code>Security researchers have already demonstrated how indirect prompt injections can exploit vulnerabilities by steal ing proprietary data or running malicious code remotely on a machine.</code> |
357
+ | <code>What factors might organizations consider when tailoring their measurement of GAI risks?</code> | <code>Organizations may choose to tailor how they measure GAI risks based on these characteristics .</code> |
358
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
359
+ ```json
360
+ {
361
+ "loss": "MultipleNegativesRankingLoss",
362
+ "matryoshka_dims": [
363
+ 768,
364
+ 512,
365
+ 256,
366
+ 128,
367
+ 64
368
+ ],
369
+ "matryoshka_weights": [
370
+ 1,
371
+ 1,
372
+ 1,
373
+ 1,
374
+ 1
375
+ ],
376
+ "n_dims_per_step": -1
377
+ }
378
+ ```
379
+
380
+ ### Training Hyperparameters
381
+ #### Non-Default Hyperparameters
382
+
383
+ - `eval_strategy`: steps
384
+ - `per_device_train_batch_size`: 20
385
+ - `per_device_eval_batch_size`: 20
386
+ - `num_train_epochs`: 5
387
+ - `multi_dataset_batch_sampler`: round_robin
388
+
389
+ #### All Hyperparameters
390
+ <details><summary>Click to expand</summary>
391
+
392
+ - `overwrite_output_dir`: False
393
+ - `do_predict`: False
394
+ - `eval_strategy`: steps
395
+ - `prediction_loss_only`: True
396
+ - `per_device_train_batch_size`: 20
397
+ - `per_device_eval_batch_size`: 20
398
+ - `per_gpu_train_batch_size`: None
399
+ - `per_gpu_eval_batch_size`: None
400
+ - `gradient_accumulation_steps`: 1
401
+ - `eval_accumulation_steps`: None
402
+ - `torch_empty_cache_steps`: None
403
+ - `learning_rate`: 5e-05
404
+ - `weight_decay`: 0.0
405
+ - `adam_beta1`: 0.9
406
+ - `adam_beta2`: 0.999
407
+ - `adam_epsilon`: 1e-08
408
+ - `max_grad_norm`: 1
409
+ - `num_train_epochs`: 5
410
+ - `max_steps`: -1
411
+ - `lr_scheduler_type`: linear
412
+ - `lr_scheduler_kwargs`: {}
413
+ - `warmup_ratio`: 0.0
414
+ - `warmup_steps`: 0
415
+ - `log_level`: passive
416
+ - `log_level_replica`: warning
417
+ - `log_on_each_node`: True
418
+ - `logging_nan_inf_filter`: True
419
+ - `save_safetensors`: True
420
+ - `save_on_each_node`: False
421
+ - `save_only_model`: False
422
+ - `restore_callback_states_from_checkpoint`: False
423
+ - `no_cuda`: False
424
+ - `use_cpu`: False
425
+ - `use_mps_device`: False
426
+ - `seed`: 42
427
+ - `data_seed`: None
428
+ - `jit_mode_eval`: False
429
+ - `use_ipex`: False
430
+ - `bf16`: False
431
+ - `fp16`: False
432
+ - `fp16_opt_level`: O1
433
+ - `half_precision_backend`: auto
434
+ - `bf16_full_eval`: False
435
+ - `fp16_full_eval`: False
436
+ - `tf32`: None
437
+ - `local_rank`: 0
438
+ - `ddp_backend`: None
439
+ - `tpu_num_cores`: None
440
+ - `tpu_metrics_debug`: False
441
+ - `debug`: []
442
+ - `dataloader_drop_last`: False
443
+ - `dataloader_num_workers`: 0
444
+ - `dataloader_prefetch_factor`: None
445
+ - `past_index`: -1
446
+ - `disable_tqdm`: False
447
+ - `remove_unused_columns`: True
448
+ - `label_names`: None
449
+ - `load_best_model_at_end`: False
450
+ - `ignore_data_skip`: False
451
+ - `fsdp`: []
452
+ - `fsdp_min_num_params`: 0
453
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
454
+ - `fsdp_transformer_layer_cls_to_wrap`: None
455
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
456
+ - `deepspeed`: None
457
+ - `label_smoothing_factor`: 0.0
458
+ - `optim`: adamw_torch
459
+ - `optim_args`: None
460
+ - `adafactor`: False
461
+ - `group_by_length`: False
462
+ - `length_column_name`: length
463
+ - `ddp_find_unused_parameters`: None
464
+ - `ddp_bucket_cap_mb`: None
465
+ - `ddp_broadcast_buffers`: False
466
+ - `dataloader_pin_memory`: True
467
+ - `dataloader_persistent_workers`: False
468
+ - `skip_memory_metrics`: True
469
+ - `use_legacy_prediction_loop`: False
470
+ - `push_to_hub`: False
471
+ - `resume_from_checkpoint`: None
472
+ - `hub_model_id`: None
473
+ - `hub_strategy`: every_save
474
+ - `hub_private_repo`: False
475
+ - `hub_always_push`: False
476
+ - `gradient_checkpointing`: False
477
+ - `gradient_checkpointing_kwargs`: None
478
+ - `include_inputs_for_metrics`: False
479
+ - `eval_do_concat_batches`: True
480
+ - `fp16_backend`: auto
481
+ - `push_to_hub_model_id`: None
482
+ - `push_to_hub_organization`: None
483
+ - `mp_parameters`:
484
+ - `auto_find_batch_size`: False
485
+ - `full_determinism`: False
486
+ - `torchdynamo`: None
487
+ - `ray_scope`: last
488
+ - `ddp_timeout`: 1800
489
+ - `torch_compile`: False
490
+ - `torch_compile_backend`: None
491
+ - `torch_compile_mode`: None
492
+ - `dispatch_batches`: None
493
+ - `split_batches`: None
494
+ - `include_tokens_per_second`: False
495
+ - `include_num_input_tokens_seen`: False
496
+ - `neftune_noise_alpha`: None
497
+ - `optim_target_modules`: None
498
+ - `batch_eval_metrics`: False
499
+ - `eval_on_start`: False
500
+ - `use_liger_kernel`: False
501
+ - `eval_use_gather_object`: False
502
+ - `batch_sampler`: batch_sampler
503
+ - `multi_dataset_batch_sampler`: round_robin
504
+
505
+ </details>
506
+
507
+ ### Training Logs
508
+ | Epoch | Step | cosine_map@100 |
509
+ |:------:|:----:|:--------------:|
510
+ | 1.0 | 30 | 0.9216 |
511
+ | 1.6667 | 50 | 0.9292 |
512
+ | 2.0 | 60 | 0.9361 |
513
+ | 3.0 | 90 | 0.9418 |
514
+
515
+
516
+ ### Framework Versions
517
+ - Python: 3.11.9
518
+ - Sentence Transformers: 3.1.1
519
+ - Transformers: 4.45.0
520
+ - PyTorch: 2.4.1+cu121
521
+ - Accelerate: 0.34.2
522
+ - Datasets: 3.0.1
523
+ - Tokenizers: 0.20.0
524
+
525
+ ## Citation
526
+
527
+ ### BibTeX
528
+
529
+ #### Sentence Transformers
530
+ ```bibtex
531
+ @inproceedings{reimers-2019-sentence-bert,
532
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
533
+ author = "Reimers, Nils and Gurevych, Iryna",
534
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
535
+ month = "11",
536
+ year = "2019",
537
+ publisher = "Association for Computational Linguistics",
538
+ url = "https://arxiv.org/abs/1908.10084",
539
+ }
540
+ ```
541
+
542
+ #### MatryoshkaLoss
543
+ ```bibtex
544
+ @misc{kusupati2024matryoshka,
545
+ title={Matryoshka Representation Learning},
546
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
547
+ year={2024},
548
+ eprint={2205.13147},
549
+ archivePrefix={arXiv},
550
+ primaryClass={cs.LG}
551
+ }
552
+ ```
553
+
554
+ #### MultipleNegativesRankingLoss
555
+ ```bibtex
556
+ @misc{henderson2017efficient,
557
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
558
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
559
+ year={2017},
560
+ eprint={1705.00652},
561
+ archivePrefix={arXiv},
562
+ primaryClass={cs.CL}
563
+ }
564
+ ```
565
+
566
+ <!--
567
+ ## Glossary
568
+
569
+ *Clearly define terms in order to be accessible across audiences.*
570
+ -->
571
+
572
+ <!--
573
+ ## Model Card Authors
574
+
575
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
576
+ -->
577
+
578
+ <!--
579
+ ## Model Card Contact
580
+
581
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
582
+ -->
README.md:Zone.Identifier ADDED
File without changes
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Snowflake/snowflake-arctic-embed-m",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.45.0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config.json:Zone.Identifier ADDED
File without changes
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.0",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {
8
+ "query": "Represent this sentence for searching relevant passages: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": null
12
+ }
config_sentence_transformers.json:Zone.Identifier ADDED
File without changes
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05e2899560dd847e094c457cfe02489b704ddf821b6254fb0cd0845fa3924863
3
+ size 435588776
model.safetensors:Zone.Identifier ADDED
File without changes
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
modules.json:Zone.Identifier ADDED
File without changes
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
sentence_bert_config.json:Zone.Identifier ADDED
File without changes
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
special_tokens_map.json:Zone.Identifier ADDED
File without changes
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.json:Zone.Identifier ADDED
File without changes
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 512,
49
+ "model_max_length": 512,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
tokenizer_config.json:Zone.Identifier ADDED
File without changes
vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
vocab.txt:Zone.Identifier ADDED
File without changes