|
import math |
|
import torch |
|
import torch.nn as nn |
|
from collections import OrderedDict |
|
|
|
|
|
def conv3x3(in_channels: int, out_channels: int, stride: int = 1) -> nn.Conv2d: |
|
return nn.Conv2d( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=1, |
|
bias=False |
|
) |
|
|
|
|
|
def downsample_basic_block( |
|
in_channels: int, |
|
out_channels: int, |
|
stride: int, |
|
) -> nn.Sequential: |
|
return nn.Sequential( |
|
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(out_channels), |
|
) |
|
|
|
|
|
def downsample_basic_block_v2( |
|
in_channels: int, |
|
out_channels: int, |
|
stride: int, |
|
) -> nn.Sequential: |
|
return nn.Sequential( |
|
nn.AvgPool2d( |
|
kernel_size=stride, |
|
stride=stride, |
|
ceil_mode=True, |
|
count_include_pad=False, |
|
), |
|
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=False), |
|
nn.BatchNorm2d(out_channels), |
|
) |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
channels: int, |
|
stride: int = 1, |
|
downsample: nn.Sequential = None, |
|
relu_type: str = "relu", |
|
) -> None: |
|
super(BasicBlock, self).__init__() |
|
assert relu_type in ["relu", "prelu"] |
|
|
|
self.conv1 = conv3x3(in_channels, channels, stride) |
|
self.bn1 = nn.BatchNorm2d(channels) |
|
|
|
if relu_type == "relu": |
|
self.relu1 = nn.ReLU(inplace=True) |
|
self.relu2 = nn.ReLU(inplace=True) |
|
elif relu_type == "prelu": |
|
self.relu1 = nn.PReLU(num_parameters=channels) |
|
self.relu2 = nn.PReLU(num_parameters=channels) |
|
else: |
|
raise Exception("relu type not implemented") |
|
|
|
self.conv2 = conv3x3(channels, channels) |
|
self.bn2 = nn.BatchNorm2d(channels) |
|
|
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
residual = x |
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu1(out) |
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
out += residual |
|
out = self.relu2(out) |
|
return out |
|
|
|
|
|
class ResNet(nn.Module): |
|
def __init__( |
|
self, |
|
block: nn.Module, |
|
layers: list, |
|
relu_type: str = "relu", |
|
gamma_zero: bool = False, |
|
avg_pool_downsample: bool = False, |
|
) -> None: |
|
self.in_channels = 64 |
|
self.relu_type = relu_type |
|
self.gamma_zero = gamma_zero |
|
self.downsample_block = ( |
|
downsample_basic_block_v2 if avg_pool_downsample else downsample_basic_block |
|
) |
|
|
|
super(ResNet, self).__init__() |
|
self.layer1 = self._make_layer(block, 64, layers[0]) |
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) |
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2) |
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=2) |
|
self.avgpool = nn.AdaptiveAvgPool2d(1) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
m.weight.data.normal_(0, math.sqrt(2.0 / n)) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
m.weight.data.fill_(1) |
|
m.bias.data.zero_() |
|
|
|
if self.gamma_zero: |
|
for m in self.modules(): |
|
if isinstance(m, BasicBlock): |
|
m.bn2.weight.data.zero_() |
|
|
|
def _make_layer( |
|
self, |
|
block: nn.Module, |
|
channels: int, |
|
n_blocks: int, |
|
stride: int = 1, |
|
) -> nn.Sequential: |
|
downsample = None |
|
if stride != 1 or self.in_channels != channels * block.expansion: |
|
downsample = self.downsample_block( |
|
in_channels=self.in_channels, |
|
out_channels=channels * block.expansion, |
|
stride=stride, |
|
) |
|
|
|
layers = [ |
|
block( |
|
self.in_channels, channels, stride, downsample, relu_type=self.relu_type |
|
) |
|
] |
|
self.in_channels = channels * block.expansion |
|
for _ in range(1, n_blocks): |
|
layers.append(block(self.in_channels, channels, relu_type=self.relu_type)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
x = self.avgpool(x) |
|
x = x.view(x.size(0), -1) |
|
return x |
|
|
|
|
|
class ResNetEncoder(nn.Module): |
|
def __init__(self, relu_type: str, weight_file: str = None) -> None: |
|
super(ResNetEncoder, self).__init__() |
|
self.frontend_out = 64 |
|
self.backend_out = 512 |
|
frontend_relu = ( |
|
nn.PReLU(num_parameters=self.frontend_out) |
|
if relu_type == "prelu" |
|
else nn.ReLU() |
|
) |
|
|
|
self.frontend3D = nn.Sequential( |
|
nn.Conv3d( |
|
1, |
|
self.frontend_out, |
|
kernel_size=(5, 7, 7), |
|
stride=(1, 2, 2), |
|
padding=(2, 3, 3), |
|
bias=False, |
|
), |
|
nn.BatchNorm3d(self.frontend_out), |
|
frontend_relu, |
|
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1)), |
|
) |
|
self.trunk = ResNet(BasicBlock, [2, 2, 2, 2], relu_type=relu_type) |
|
|
|
if weight_file is not None: |
|
model_state_dict = torch.load(weight_file, map_location=torch.device("cpu")) |
|
model_state_dict = model_state_dict["model_state_dict"] |
|
frontend_state_dict, trunk_state_dict = OrderedDict(), OrderedDict() |
|
for key, val in model_state_dict.items(): |
|
new_key = ".".join(key.split(".")[1:]) |
|
if "frontend3D" in key: |
|
frontend_state_dict[new_key] = val |
|
if "trunk" in key: |
|
trunk_state_dict[new_key] = val |
|
self.frontend3D.load_state_dict(frontend_state_dict) |
|
self.trunk.load_state_dict(trunk_state_dict) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
B, C, T, H, W = x.size() |
|
x = self.frontend3D(x) |
|
Tnew = x.shape[2] |
|
x = self.convert_3D_to_2D(x) |
|
x = self.trunk(x) |
|
x = x.view(B, Tnew, x.size(1)) |
|
x = x.transpose(1, 2).contiguous() |
|
return x |
|
|
|
def convert_3D_to_2D(self, x: torch.Tensor) -> torch.Tensor: |
|
n_batches, n_channels, s_time, sx, sy = x.shape |
|
x = x.transpose(1, 2).contiguous() |
|
return x.reshape(n_batches * s_time, n_channels, sx, sy) |
|
|