File size: 6,867 Bytes
3e1357a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import math
import torch
import torch.nn as nn
from collections import OrderedDict


def conv3x3(in_channels: int, out_channels: int, stride: int = 1) -> nn.Conv2d:
    return nn.Conv2d(
        in_channels=in_channels,
        out_channels=out_channels,
        kernel_size=3,
        stride=stride,
        padding=1,
        bias=False
    )


def downsample_basic_block(
    in_channels: int,
    out_channels: int,
    stride: int,
) -> nn.Sequential:
    return nn.Sequential(
        nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
        nn.BatchNorm2d(out_channels),
    )


def downsample_basic_block_v2(
    in_channels: int,
    out_channels: int,
    stride: int,
) -> nn.Sequential:
    return nn.Sequential(
        nn.AvgPool2d(
            kernel_size=stride,
            stride=stride,
            ceil_mode=True,
            count_include_pad=False,
        ),
        nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=False),
        nn.BatchNorm2d(out_channels),
    )


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(
        self,
        in_channels: int,
        channels: int,
        stride: int = 1,
        downsample: nn.Sequential = None,
        relu_type: str = "relu",
    ) -> None:
        super(BasicBlock, self).__init__()
        assert relu_type in ["relu", "prelu"]

        self.conv1 = conv3x3(in_channels, channels, stride)
        self.bn1 = nn.BatchNorm2d(channels)

        if relu_type == "relu":
            self.relu1 = nn.ReLU(inplace=True)
            self.relu2 = nn.ReLU(inplace=True)
        elif relu_type == "prelu":
            self.relu1 = nn.PReLU(num_parameters=channels)
            self.relu2 = nn.PReLU(num_parameters=channels)
        else:
            raise Exception("relu type not implemented")

        self.conv2 = conv3x3(channels, channels)
        self.bn2 = nn.BatchNorm2d(channels)

        self.downsample = downsample
        self.stride = stride

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        residual = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu1(out)
        out = self.conv2(out)
        out = self.bn2(out)
        if self.downsample is not None:
            residual = self.downsample(x)
        out += residual
        out = self.relu2(out)
        return out


class ResNet(nn.Module):
    def __init__(
        self,
        block: nn.Module,
        layers: list,
        relu_type: str = "relu",
        gamma_zero: bool = False,
        avg_pool_downsample: bool = False,
    ) -> None:
        self.in_channels = 64
        self.relu_type = relu_type
        self.gamma_zero = gamma_zero
        self.downsample_block = (
            downsample_basic_block_v2 if avg_pool_downsample else downsample_basic_block
        )

        super(ResNet, self).__init__()
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.AdaptiveAvgPool2d(1)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2.0 / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

        if self.gamma_zero:
            for m in self.modules():
                if isinstance(m, BasicBlock):
                    m.bn2.weight.data.zero_()

    def _make_layer(
        self,
        block: nn.Module,
        channels: int,
        n_blocks: int,
        stride: int = 1,
    ) -> nn.Sequential:
        downsample = None
        if stride != 1 or self.in_channels != channels * block.expansion:
            downsample = self.downsample_block(
                in_channels=self.in_channels,
                out_channels=channels * block.expansion,
                stride=stride,
            )

        layers = [
            block(
                self.in_channels, channels, stride, downsample, relu_type=self.relu_type
            )
        ]
        self.in_channels = channels * block.expansion
        for _ in range(1, n_blocks):
            layers.append(block(self.in_channels, channels, relu_type=self.relu_type))

        return nn.Sequential(*layers)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        return x


class ResNetEncoder(nn.Module):
    def __init__(self, relu_type: str, weight_file: str = None) -> None:
        super(ResNetEncoder, self).__init__()
        self.frontend_out = 64
        self.backend_out = 512
        frontend_relu = (
            nn.PReLU(num_parameters=self.frontend_out)
            if relu_type == "prelu"
            else nn.ReLU()
        )

        self.frontend3D = nn.Sequential(
            nn.Conv3d(
                1,
                self.frontend_out,
                kernel_size=(5, 7, 7),
                stride=(1, 2, 2),
                padding=(2, 3, 3),
                bias=False,
            ),
            nn.BatchNorm3d(self.frontend_out),
            frontend_relu,
            nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1)),
        )
        self.trunk = ResNet(BasicBlock, [2, 2, 2, 2], relu_type=relu_type)

        if weight_file is not None:
            model_state_dict = torch.load(weight_file, map_location=torch.device("cpu"))
            model_state_dict = model_state_dict["model_state_dict"]
            frontend_state_dict, trunk_state_dict = OrderedDict(), OrderedDict()
            for key, val in model_state_dict.items():
                new_key = ".".join(key.split(".")[1:])
                if "frontend3D" in key:
                    frontend_state_dict[new_key] = val
                if "trunk" in key:
                    trunk_state_dict[new_key] = val
            self.frontend3D.load_state_dict(frontend_state_dict)
            self.trunk.load_state_dict(trunk_state_dict)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        B, C, T, H, W = x.size()
        x = self.frontend3D(x)
        Tnew = x.shape[2]
        x = self.convert_3D_to_2D(x)
        x = self.trunk(x)
        x = x.view(B, Tnew, x.size(1))
        x = x.transpose(1, 2).contiguous()
        return x

    def convert_3D_to_2D(self, x: torch.Tensor) -> torch.Tensor:
        n_batches, n_channels, s_time, sx, sy = x.shape
        x = x.transpose(1, 2).contiguous()
        return x.reshape(n_batches * s_time, n_channels, sx, sy)