tanthinhdt
commited on
Commit
•
3e1357a
1
Parent(s):
ac8572e
Upload model
Browse files- README.md +199 -0
- config.json +101 -0
- configuration.py +181 -0
- encoder.py +110 -0
- generation_config.json +4 -0
- model.safetensors +3 -0
- modelling.py +753 -0
- resnet.py +216 -0
- utils.py +166 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_dropout": 0.1,
|
3 |
+
"activation_fn": "gelu",
|
4 |
+
"apply_mask": false,
|
5 |
+
"arch": "avsp_llm",
|
6 |
+
"architectures": [
|
7 |
+
"AVSPLLMModel"
|
8 |
+
],
|
9 |
+
"attention_dropout": 0.1,
|
10 |
+
"audio_dropout": 0.0,
|
11 |
+
"audio_feat_dim": 104,
|
12 |
+
"auto_map": {
|
13 |
+
"AutoConfig": "configuration.AVSPLLMConfig",
|
14 |
+
"AutoModelForVideoClassification": "modelling.AVSPLLMModel"
|
15 |
+
},
|
16 |
+
"conv_bias": false,
|
17 |
+
"conv_feature_layers": "[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2",
|
18 |
+
"conv_pos": 128,
|
19 |
+
"conv_pos_groups": 16,
|
20 |
+
"data": null,
|
21 |
+
"decoder_activation_dropout": 0.0,
|
22 |
+
"decoder_attention_dropout": 0.1,
|
23 |
+
"decoder_attention_heads": 4,
|
24 |
+
"decoder_dropout": 0.1,
|
25 |
+
"decoder_embed_dim": 2560,
|
26 |
+
"decoder_ffn_embed_dim": 3072,
|
27 |
+
"decoder_layerdrop": 0.0,
|
28 |
+
"decoder_layers": 6,
|
29 |
+
"decoder_learned_pos": false,
|
30 |
+
"decoder_normalize_before": false,
|
31 |
+
"dropout": 0.1,
|
32 |
+
"dropout_features": 0.0,
|
33 |
+
"dropout_input": 0.0,
|
34 |
+
"encoder_attention_heads": 16,
|
35 |
+
"encoder_embed_dim": 1024,
|
36 |
+
"encoder_ffn_embed_dim": 4096,
|
37 |
+
"encoder_layerdrop": 0.0,
|
38 |
+
"encoder_layers": 24,
|
39 |
+
"extractor_mode": "default",
|
40 |
+
"feature_ds_rate": 1,
|
41 |
+
"feature_grad_mult": 1.0,
|
42 |
+
"final_dim": 256,
|
43 |
+
"final_dropout": 0.1,
|
44 |
+
"freeze_finetune_updates": 0,
|
45 |
+
"ignored_weights": [],
|
46 |
+
"input_modality": "video",
|
47 |
+
"label_rate": 25,
|
48 |
+
"latent_temp": [
|
49 |
+
2.0,
|
50 |
+
0.5,
|
51 |
+
0.999995
|
52 |
+
],
|
53 |
+
"layer_norm_first": false,
|
54 |
+
"layerdrop": 0.0,
|
55 |
+
"llm_ckpt_path": "vilm/vinallama-2.7b",
|
56 |
+
"logit_temp": 0.1,
|
57 |
+
"mask_channel_length": 64,
|
58 |
+
"mask_channel_min_space": 1,
|
59 |
+
"mask_channel_other": 0.0,
|
60 |
+
"mask_channel_prob": 0.5,
|
61 |
+
"mask_channel_selection": "static",
|
62 |
+
"mask_length": 10,
|
63 |
+
"mask_length_audio": 10,
|
64 |
+
"mask_length_image": 10,
|
65 |
+
"mask_min_space": 1,
|
66 |
+
"mask_other": 0.0,
|
67 |
+
"mask_prob": 0.5,
|
68 |
+
"mask_prob_audio": 0.65,
|
69 |
+
"mask_prob_image": 0.65,
|
70 |
+
"mask_selection": "static",
|
71 |
+
"masking_type": "input",
|
72 |
+
"masking_updates": 0,
|
73 |
+
"max_target_positions": 2048,
|
74 |
+
"modality_dropout": 0.0,
|
75 |
+
"modality_fuse": "concat",
|
76 |
+
"model_type": "avsp_llm",
|
77 |
+
"no_mask_channel_overlap": false,
|
78 |
+
"no_mask_overlap": false,
|
79 |
+
"no_pretrained_weights": false,
|
80 |
+
"no_scale_embedding": true,
|
81 |
+
"no_token_positional_embeddings": false,
|
82 |
+
"normalize": false,
|
83 |
+
"num_classes": 2004,
|
84 |
+
"num_frames": 16,
|
85 |
+
"num_frozen_layers": 0,
|
86 |
+
"pretrained": "tanthinhdt/ViAVSP-LLM_v1.0",
|
87 |
+
"resnet_relu_type": "prelu",
|
88 |
+
"resnet_weights": null,
|
89 |
+
"sample_rate": 25,
|
90 |
+
"selection_type": "same_other_seq",
|
91 |
+
"share_decoder_input_output_embed": false,
|
92 |
+
"sim_type": "cosine",
|
93 |
+
"skip_masked": false,
|
94 |
+
"skip_nomask": false,
|
95 |
+
"sub_encoder_layers": 0,
|
96 |
+
"target_glu": false,
|
97 |
+
"torch_dtype": "float32",
|
98 |
+
"transformers_version": "4.41.2",
|
99 |
+
"untie_final_proj": false,
|
100 |
+
"w2v_args": null
|
101 |
+
}
|
configuration.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple
|
2 |
+
from transformers import PretrainedConfig
|
3 |
+
|
4 |
+
|
5 |
+
class AVHubertConfig(PretrainedConfig):
|
6 |
+
model_type = "av_hubert"
|
7 |
+
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
label_rate: int = 25,
|
11 |
+
sample_rate: int = 25,
|
12 |
+
input_modality: str = "video",
|
13 |
+
extractor_mode: str = "default",
|
14 |
+
encoder_layers: int = 24,
|
15 |
+
encoder_embed_dim: int = 1024,
|
16 |
+
encoder_ffn_embed_dim: int = 4096,
|
17 |
+
encoder_attention_heads: int = 16,
|
18 |
+
activation_fn: str = "gelu",
|
19 |
+
dropout: float = 0.1,
|
20 |
+
attention_dropout: float = 0.1,
|
21 |
+
activation_dropout: float = 0.1,
|
22 |
+
encoder_layerdrop: float = 0.0,
|
23 |
+
dropout_input: float = 0.0,
|
24 |
+
dropout_features: float = 0.0,
|
25 |
+
final_dim: int = 256,
|
26 |
+
untie_final_proj: bool = False,
|
27 |
+
layer_norm_first: bool = False,
|
28 |
+
conv_feature_layers: str = "[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2",
|
29 |
+
conv_bias: bool = False,
|
30 |
+
logit_temp: float = 0.1,
|
31 |
+
target_glu: bool = False,
|
32 |
+
feature_grad_mult: float = 1.0,
|
33 |
+
mask_length_audio: int = 10,
|
34 |
+
mask_prob_audio: float = 0.65,
|
35 |
+
mask_length_image: int = 10,
|
36 |
+
mask_prob_image: float = 0.65,
|
37 |
+
mask_selection: str = "static",
|
38 |
+
mask_other: float = 0.0,
|
39 |
+
no_mask_overlap: bool = False,
|
40 |
+
mask_min_space: int = 1,
|
41 |
+
mask_channel_length: int = 64,
|
42 |
+
mask_channel_prob: float = 0.5,
|
43 |
+
mask_channel_selection: str = "static",
|
44 |
+
mask_channel_other: float = 0.0,
|
45 |
+
no_mask_channel_overlap: bool = False,
|
46 |
+
mask_channel_min_space: int = 1,
|
47 |
+
conv_pos: int = 128,
|
48 |
+
conv_pos_groups: int = 16,
|
49 |
+
latent_temp: Tuple[float, float, float] = (2.0, 0.5, 0.999995),
|
50 |
+
skip_masked: bool = False,
|
51 |
+
skip_nomask: bool = False,
|
52 |
+
resnet_relu_type: str = "prelu",
|
53 |
+
resnet_weights: str = None,
|
54 |
+
sim_type: str = "cosine",
|
55 |
+
sub_encoder_layers: int = 0,
|
56 |
+
audio_feat_dim: int = 104,
|
57 |
+
modality_dropout: float = 0.0,
|
58 |
+
audio_dropout: float = 0.0,
|
59 |
+
modality_fuse: str = "concat",
|
60 |
+
selection_type: str = "same_other_seq",
|
61 |
+
masking_type: str = "input",
|
62 |
+
decoder_embed_dim: int = 2560,
|
63 |
+
decoder_ffn_embed_dim: int = 3072,
|
64 |
+
decoder_layers: int = 6,
|
65 |
+
decoder_layerdrop: float = 0.0,
|
66 |
+
decoder_attention_heads: int = 4,
|
67 |
+
decoder_learned_pos: bool = False,
|
68 |
+
decoder_normalize_before: bool = False,
|
69 |
+
no_token_positional_embeddings: bool = False,
|
70 |
+
decoder_dropout: float = 0.1,
|
71 |
+
decoder_attention_dropout: float = 0.1,
|
72 |
+
decoder_activation_dropout: float = 0.0,
|
73 |
+
max_target_positions: int = 2048,
|
74 |
+
share_decoder_input_output_embed: bool = False,
|
75 |
+
no_scale_embedding: bool = True,
|
76 |
+
num_classes: int = 2004,
|
77 |
+
**kwargs,
|
78 |
+
) -> None:
|
79 |
+
super().__init__(**kwargs)
|
80 |
+
self.label_rate = label_rate
|
81 |
+
self.sample_rate = sample_rate
|
82 |
+
self.input_modality = input_modality
|
83 |
+
self.extractor_mode = extractor_mode
|
84 |
+
self.encoder_layers = encoder_layers
|
85 |
+
self.encoder_embed_dim = encoder_embed_dim
|
86 |
+
self.encoder_ffn_embed_dim = encoder_ffn_embed_dim
|
87 |
+
self.encoder_attention_heads = encoder_attention_heads
|
88 |
+
self.activation_fn = activation_fn
|
89 |
+
self.dropout = dropout
|
90 |
+
self.attention_dropout = attention_dropout
|
91 |
+
self.activation_dropout = activation_dropout
|
92 |
+
self.encoder_layerdrop = encoder_layerdrop
|
93 |
+
self.dropout_input = dropout_input
|
94 |
+
self.dropout_features = dropout_features
|
95 |
+
self.final_dim = final_dim
|
96 |
+
self.untie_final_proj = untie_final_proj
|
97 |
+
self.layer_norm_first = layer_norm_first
|
98 |
+
self.conv_feature_layers = conv_feature_layers
|
99 |
+
self.conv_bias = conv_bias
|
100 |
+
self.logit_temp = logit_temp
|
101 |
+
self.target_glu = target_glu
|
102 |
+
self.feature_grad_mult = feature_grad_mult
|
103 |
+
self.mask_length_audio = mask_length_audio
|
104 |
+
self.mask_prob_audio = mask_prob_audio
|
105 |
+
self.mask_length_image = mask_length_image
|
106 |
+
self.mask_prob_image = mask_prob_image
|
107 |
+
self.mask_selection = mask_selection
|
108 |
+
self.mask_other = mask_other
|
109 |
+
self.no_mask_overlap = no_mask_overlap
|
110 |
+
self.mask_min_space = mask_min_space
|
111 |
+
self.mask_channel_length = mask_channel_length
|
112 |
+
self.mask_channel_prob = mask_channel_prob
|
113 |
+
self.mask_channel_selection = mask_channel_selection
|
114 |
+
self.mask_channel_other = mask_channel_other
|
115 |
+
self.no_mask_channel_overlap = no_mask_channel_overlap
|
116 |
+
self.mask_channel_min_space = mask_channel_min_space
|
117 |
+
self.conv_pos = conv_pos
|
118 |
+
self.conv_pos_groups = conv_pos_groups
|
119 |
+
self.latent_temp = latent_temp
|
120 |
+
self.skip_masked = skip_masked
|
121 |
+
self.skip_nomask = skip_nomask
|
122 |
+
self.resnet_relu_type = resnet_relu_type
|
123 |
+
self.resnet_weights = resnet_weights
|
124 |
+
self.sim_type = sim_type
|
125 |
+
self.sub_encoder_layers = sub_encoder_layers
|
126 |
+
self.audio_feat_dim = audio_feat_dim
|
127 |
+
self.modality_dropout = modality_dropout
|
128 |
+
self.audio_dropout = audio_dropout
|
129 |
+
self.modality_fuse = modality_fuse
|
130 |
+
self.selection_type = selection_type
|
131 |
+
self.masking_type = masking_type
|
132 |
+
self.decoder_embed_dim = decoder_embed_dim
|
133 |
+
self.decoder_ffn_embed_dim = decoder_ffn_embed_dim
|
134 |
+
self.decoder_layers = decoder_layers
|
135 |
+
self.decoder_layerdrop = decoder_layerdrop
|
136 |
+
self.decoder_attention_heads = decoder_attention_heads
|
137 |
+
self.decoder_learned_pos = decoder_learned_pos
|
138 |
+
self.decoder_normalize_before = decoder_normalize_before
|
139 |
+
self.no_token_positional_embeddings = no_token_positional_embeddings
|
140 |
+
self.decoder_dropout = decoder_dropout
|
141 |
+
self.decoder_attention_dropout = decoder_attention_dropout
|
142 |
+
self.decoder_activation_dropout = decoder_activation_dropout
|
143 |
+
self.max_target_positions = max_target_positions
|
144 |
+
self.share_decoder_input_output_embed = share_decoder_input_output_embed
|
145 |
+
self.no_scale_embedding = no_scale_embedding
|
146 |
+
self.num_classes = num_classes
|
147 |
+
self.feature_ds_rate = 1
|
148 |
+
|
149 |
+
|
150 |
+
class AVSPLLMConfig(AVHubertConfig):
|
151 |
+
model_type = "avsp_llm"
|
152 |
+
|
153 |
+
def __init__(
|
154 |
+
self,
|
155 |
+
llm_ckpt_path: str = "vilm/vinallama-2.7b",
|
156 |
+
no_pretrained_weights: bool = False,
|
157 |
+
final_dropout: float = 0.1,
|
158 |
+
apply_mask: bool = False,
|
159 |
+
mask_length: int = 10,
|
160 |
+
mask_prob: float = 0.5,
|
161 |
+
masking_updates: int = 0,
|
162 |
+
layerdrop: float = 0.0,
|
163 |
+
normalize: bool = False,
|
164 |
+
data: str = None,
|
165 |
+
w2v_args: dict = None,
|
166 |
+
freeze_finetune_updates: int = 0,
|
167 |
+
**kwargs,
|
168 |
+
) -> None:
|
169 |
+
super().__init__(**kwargs)
|
170 |
+
self.llm_ckpt_path = llm_ckpt_path
|
171 |
+
self.no_pretrained_weights = no_pretrained_weights
|
172 |
+
self.final_dropout = final_dropout
|
173 |
+
self.apply_mask = apply_mask
|
174 |
+
self.mask_length = mask_length
|
175 |
+
self.mask_prob = mask_prob
|
176 |
+
self.masking_updates = masking_updates
|
177 |
+
self.layerdrop = layerdrop
|
178 |
+
self.normalize = normalize
|
179 |
+
self.data = data
|
180 |
+
self.w2v_args = w2v_args
|
181 |
+
self.freeze_finetune_updates = freeze_finetune_updates
|
encoder.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from typing import List, Optional, Tuple
|
7 |
+
from .configuration import AVHubertConfig
|
8 |
+
from fairseq.utils import index_put
|
9 |
+
from fairseq.modules import LayerNorm, SamePad
|
10 |
+
from fairseq.models.wav2vec.wav2vec2 import TransformerSentenceEncoderLayer
|
11 |
+
from fairseq.modules.transformer_sentence_encoder import init_bert_params
|
12 |
+
|
13 |
+
|
14 |
+
class TransformerEncoder(nn.Module):
|
15 |
+
def __init__(self, config: AVHubertConfig) -> None:
|
16 |
+
super().__init__()
|
17 |
+
|
18 |
+
self.dropout = config.dropout
|
19 |
+
self.embedding_dim = config.encoder_embed_dim
|
20 |
+
|
21 |
+
self.pos_conv = nn.Conv1d(
|
22 |
+
self.embedding_dim,
|
23 |
+
self.embedding_dim,
|
24 |
+
kernel_size=config.conv_pos,
|
25 |
+
padding=config.conv_pos // 2,
|
26 |
+
groups=config.conv_pos_groups,
|
27 |
+
)
|
28 |
+
dropout = 0
|
29 |
+
std = math.sqrt((4 * (1.0 - dropout)) / (config.conv_pos * self.embedding_dim))
|
30 |
+
nn.init.normal_(self.pos_conv.weight, mean=0, std=std)
|
31 |
+
nn.init.constant_(self.pos_conv.bias, 0)
|
32 |
+
|
33 |
+
self.pos_conv = nn.utils.weight_norm(
|
34 |
+
self.pos_conv, name="weight", dim=2
|
35 |
+
)
|
36 |
+
self.pos_conv = nn.Sequential(self.pos_conv, SamePad(config.conv_pos), nn.GELU())
|
37 |
+
|
38 |
+
self.layers = nn.ModuleList(
|
39 |
+
[
|
40 |
+
TransformerSentenceEncoderLayer(
|
41 |
+
embedding_dim=self.embedding_dim,
|
42 |
+
ffn_embedding_dim=config.encoder_ffn_embed_dim,
|
43 |
+
num_attention_heads=config.encoder_attention_heads,
|
44 |
+
dropout=self.dropout,
|
45 |
+
attention_dropout=config.attention_dropout,
|
46 |
+
activation_dropout=config.activation_dropout,
|
47 |
+
activation_fn=config.activation_fn,
|
48 |
+
layer_norm_first=config.layer_norm_first,
|
49 |
+
)
|
50 |
+
for _ in range(config.encoder_layers)
|
51 |
+
]
|
52 |
+
)
|
53 |
+
|
54 |
+
self.layer_norm_first = config.layer_norm_first
|
55 |
+
self.layer_norm = LayerNorm(self.embedding_dim)
|
56 |
+
self.layerdrop = config.encoder_layerdrop
|
57 |
+
|
58 |
+
self.apply(init_bert_params)
|
59 |
+
|
60 |
+
def forward(
|
61 |
+
self,
|
62 |
+
x: torch.Tensor,
|
63 |
+
padding_mask: Optional[torch.Tensor] = None,
|
64 |
+
layer: Optional[int] = None,
|
65 |
+
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
|
66 |
+
x, layer_results = self.extract_features(x, padding_mask, layer)
|
67 |
+
if self.layer_norm_first and layer is None:
|
68 |
+
x = self.layer_norm(x)
|
69 |
+
return x, layer_results
|
70 |
+
|
71 |
+
def extract_features(
|
72 |
+
self,
|
73 |
+
x: torch.Tensor,
|
74 |
+
padding_mask: Optional[torch.Tensor] = None,
|
75 |
+
tgt_layer: Optional[int] = None,
|
76 |
+
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
|
77 |
+
if padding_mask is not None:
|
78 |
+
x = index_put(x, padding_mask, 0)
|
79 |
+
|
80 |
+
x_conv = self.pos_conv(x.transpose(1, 2))
|
81 |
+
x_conv = x_conv.transpose(1, 2)
|
82 |
+
x = x + x_conv
|
83 |
+
|
84 |
+
if not self.layer_norm_first:
|
85 |
+
x = self.layer_norm(x)
|
86 |
+
|
87 |
+
x = F.dropout(x, p=self.dropout, training=self.training)
|
88 |
+
|
89 |
+
# B x T x C -> T x B x C
|
90 |
+
x = x.transpose(0, 1)
|
91 |
+
|
92 |
+
layer_results = []
|
93 |
+
r = None
|
94 |
+
for i, layer in enumerate(self.layers):
|
95 |
+
dropout_probability = np.random.random()
|
96 |
+
if not self.training or (dropout_probability > self.layerdrop):
|
97 |
+
x, z = layer(x, self_attn_padding_mask=padding_mask, need_weights=False)
|
98 |
+
if tgt_layer is not None:
|
99 |
+
layer_results.append((x, z))
|
100 |
+
if i == tgt_layer:
|
101 |
+
r = x
|
102 |
+
break
|
103 |
+
|
104 |
+
if r is not None:
|
105 |
+
x = r
|
106 |
+
|
107 |
+
# T x B x C -> B x T x C
|
108 |
+
x = x.transpose(0, 1)
|
109 |
+
|
110 |
+
return x, layer_results
|
generation_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"transformers_version": "4.41.2"
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8879d30edde4184fc1a4bd5bf54c0468b309c1dad2ff7b1b820dabbde5f44ec9
|
3 |
+
size 3126662252
|
modelling.py
ADDED
@@ -0,0 +1,753 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import logging
|
3 |
+
import contextlib
|
4 |
+
import numpy as np
|
5 |
+
import torch.nn as nn
|
6 |
+
from .resnet import ResNetEncoder
|
7 |
+
from .utils import compute_mask_indices
|
8 |
+
from .encoder import TransformerEncoder
|
9 |
+
from .configuration import AVHubertConfig, AVSPLLMConfig
|
10 |
+
from typing import Optional, Tuple, List, Dict, Any
|
11 |
+
from peft import get_peft_model, LoraConfig
|
12 |
+
from fairseq.modules import GradMultiply, LayerNorm
|
13 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
14 |
+
from transformers import (
|
15 |
+
FeatureExtractionMixin,
|
16 |
+
PreTrainedModel,
|
17 |
+
BitsAndBytesConfig,
|
18 |
+
AutoModelForCausalLM,
|
19 |
+
GenerationConfig,
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
class AVHubertFeatureExtractor(FeatureExtractionMixin):
|
24 |
+
def __init__(self, **kwargs):
|
25 |
+
super().__init__(**kwargs)
|
26 |
+
|
27 |
+
|
28 |
+
class AVSPLLMFeatureExtractor(AVHubertFeatureExtractor):
|
29 |
+
def __init__(self, **kwargs):
|
30 |
+
super().__init__(**kwargs)
|
31 |
+
|
32 |
+
|
33 |
+
class AVHubertVideoFeatureEncoder(nn.Module):
|
34 |
+
def __init__(self, config: AVHubertConfig) -> None:
|
35 |
+
super().__init__()
|
36 |
+
self.resnet = ResNetEncoder(relu_type=config.resnet_relu_type)
|
37 |
+
self.proj = nn.Linear(self.resnet.backend_out, config.encoder_embed_dim)
|
38 |
+
self.encoder = (
|
39 |
+
TransformerEncoder(config)
|
40 |
+
if config.sub_encoder_layers > 0
|
41 |
+
else None
|
42 |
+
)
|
43 |
+
|
44 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
45 |
+
x = self.resnet(x)
|
46 |
+
x = self.proj(x.transpose(1, 2))
|
47 |
+
if self.encoder is not None:
|
48 |
+
x = self.encoder(x)[0].transpose(1, 2)
|
49 |
+
else:
|
50 |
+
x = x.transpose(1, 2)
|
51 |
+
return x
|
52 |
+
|
53 |
+
|
54 |
+
class AVHubertAudioFeatureEncoder(nn.Module):
|
55 |
+
def __init__(self, config: AVHubertConfig) -> None:
|
56 |
+
super().__init__()
|
57 |
+
self.proj = nn.Linear(config.audio_feat_dim, config.encoder_embed_dim)
|
58 |
+
self.encoder = (
|
59 |
+
TransformerEncoder(config)
|
60 |
+
if config.sub_encoder_layers > 0
|
61 |
+
else None
|
62 |
+
)
|
63 |
+
|
64 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
65 |
+
x = self.proj(x.transpose(1, 2))
|
66 |
+
if self.encoder is not None:
|
67 |
+
x = self.encoder(x)[0].transpose(1, 2)
|
68 |
+
else:
|
69 |
+
x = x.transpose(1, 2)
|
70 |
+
return x
|
71 |
+
|
72 |
+
|
73 |
+
class AVHubertModel(PreTrainedModel):
|
74 |
+
config_class = AVHubertConfig
|
75 |
+
|
76 |
+
def __init__(
|
77 |
+
self,
|
78 |
+
config: AVHubertConfig = AVHubertConfig(),
|
79 |
+
dictionaries: List = [None],
|
80 |
+
) -> None:
|
81 |
+
super().__init__(config=config)
|
82 |
+
label_rate = config.label_rate
|
83 |
+
feature_ds_rate = config.feature_ds_rate
|
84 |
+
sample_rate = config.sample_rate
|
85 |
+
self.feat2tar_ration = label_rate * feature_ds_rate / sample_rate
|
86 |
+
|
87 |
+
self.feature_extractor_video = AVHubertVideoFeatureEncoder(config)
|
88 |
+
self.feature_extractor_audio = AVHubertAudioFeatureEncoder(config)
|
89 |
+
|
90 |
+
if config.modality_fuse == "concat":
|
91 |
+
self.encoder_embed_dim = config.encoder_embed_dim * 2
|
92 |
+
elif config.modality_fuse == "add":
|
93 |
+
self.encoder_embed_dim = config.encoder_embed_dim
|
94 |
+
|
95 |
+
self.post_extract_proj = (
|
96 |
+
nn.Linear(self.encoder_embed_dim, config.encoder_embed_dim)
|
97 |
+
if self.encoder_embed_dim != config.encoder_embed_dim
|
98 |
+
else None
|
99 |
+
)
|
100 |
+
|
101 |
+
self.dropout_input = nn.Dropout(config.dropout_input)
|
102 |
+
self.dropout_features = nn.Dropout(config.dropout_features)
|
103 |
+
|
104 |
+
if self.config.final_dim > 0:
|
105 |
+
final_dim = config.final_dim
|
106 |
+
else:
|
107 |
+
final_dim = config.encoder_embed_dim
|
108 |
+
|
109 |
+
self.mask_emb = nn.Parameter(
|
110 |
+
torch.FloatTensor(config.audio_feat_dim).uniform_()
|
111 |
+
if config.masking_type == "input"
|
112 |
+
else torch.FloatTensor(config.encoder_embed_dim).uniform_()
|
113 |
+
)
|
114 |
+
|
115 |
+
self.encoder = TransformerEncoder(self.config)
|
116 |
+
self.layer_norm = LayerNorm(self.encoder_embed_dim)
|
117 |
+
|
118 |
+
self.target_glu = None
|
119 |
+
if config.target_glu:
|
120 |
+
self.target_glu = nn.Sequential(
|
121 |
+
nn.Linear(config.final_dim, config.final_dim * 2),
|
122 |
+
nn.GLU(),
|
123 |
+
)
|
124 |
+
|
125 |
+
if config.untie_final_proj:
|
126 |
+
self.final_proj = nn.Linear(
|
127 |
+
config.encoder_embed_dim,
|
128 |
+
final_dim * len(dictionaries),
|
129 |
+
)
|
130 |
+
else:
|
131 |
+
self.final_proj = nn.Linear(config.encoder_embed_dim, final_dim)
|
132 |
+
|
133 |
+
# modules below are not needed during fine-tuning
|
134 |
+
if any([d is None for d in dictionaries]):
|
135 |
+
self.num_classes = config.num_classes
|
136 |
+
else:
|
137 |
+
self.num_classes = sum([len(d) for d in dictionaries])
|
138 |
+
self.label_embs_concat = nn.Parameter(
|
139 |
+
torch.FloatTensor(self.num_classes, final_dim)
|
140 |
+
)
|
141 |
+
nn.init.uniform_(self.label_embs_concat)
|
142 |
+
|
143 |
+
def apply_input_mask(
|
144 |
+
self,
|
145 |
+
x: torch.Tensor,
|
146 |
+
padding_mask: torch.Tensor,
|
147 |
+
target_list: List[torch.Tensor],
|
148 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
149 |
+
B, C, T = x.shape[:3]
|
150 |
+
is_audio = True if len(x.shape) == 3 else False
|
151 |
+
|
152 |
+
if is_audio:
|
153 |
+
mask_prob = self.config.mask_prob_audio
|
154 |
+
mask_length = self.config.mask_length_audio
|
155 |
+
else:
|
156 |
+
mask_prob = self.config.mask_prob_image
|
157 |
+
mask_length = self.config.mask_length_image
|
158 |
+
|
159 |
+
if mask_prob > 0:
|
160 |
+
mask_indices, starts, ends, batch_indexes = compute_mask_indices(
|
161 |
+
(B, T),
|
162 |
+
padding_mask,
|
163 |
+
mask_prob,
|
164 |
+
mask_length,
|
165 |
+
self.config.mask_selection,
|
166 |
+
self.config.mask_other,
|
167 |
+
min_masks=2,
|
168 |
+
no_overlap=self.config.no_mask_overlap,
|
169 |
+
min_space=self.config.mask_min_space,
|
170 |
+
)
|
171 |
+
mask_indices = torch.from_numpy(mask_indices).to(x.device)
|
172 |
+
x = x.transpose(1, 2).contiguous() # [B, T, C, H, W]
|
173 |
+
if B == 1:
|
174 |
+
x[mask_indices] = 0
|
175 |
+
elif is_audio:
|
176 |
+
x[mask_indices] = self.mask_emb
|
177 |
+
elif self.config.selection_type == "same_other_seq":
|
178 |
+
perm = (torch.arange(B) + torch.randint(low=1, high=B, size=(1,))) % B
|
179 |
+
x_perm = x[perm]
|
180 |
+
x[mask_indices] = x_perm[mask_indices]
|
181 |
+
elif self.config.selection_type == "same_seq":
|
182 |
+
batch_indexes_, other_indexes = [], []
|
183 |
+
for batch_index, start, end in zip(batch_indexes, starts, ends):
|
184 |
+
length = end - start
|
185 |
+
other_start = np.setdiff1d(
|
186 |
+
np.arange(T), np.arange(max(0, start - length), end)
|
187 |
+
)
|
188 |
+
if len(other_start) > 0:
|
189 |
+
other_start = np.random.choice(other_start, size=1)
|
190 |
+
else:
|
191 |
+
other_start = 0
|
192 |
+
other_end = other_start + length
|
193 |
+
other_indexes.append(
|
194 |
+
np.arange(other_start, other_end).clip(max=T - 1)
|
195 |
+
)
|
196 |
+
batch_indexes_.append(
|
197 |
+
np.zeros([length], dtype=np.int64) + batch_index
|
198 |
+
)
|
199 |
+
batch_indexes = np.concatenate(batch_indexes_)
|
200 |
+
other_indexes = np.concatenate(other_indexes)
|
201 |
+
x[mask_indices] = x[batch_indexes, other_indexes]
|
202 |
+
x = x.transpose(1, 2).contiguous()
|
203 |
+
else:
|
204 |
+
mask_indices = None
|
205 |
+
|
206 |
+
if self.config.mask_channel_prob > 0:
|
207 |
+
logging.info("No mask channel prob for input masking")
|
208 |
+
return x, mask_indices
|
209 |
+
|
210 |
+
def apply_feature_mask(
|
211 |
+
self,
|
212 |
+
x: torch.Tensor,
|
213 |
+
padding_mask: torch.Tensor,
|
214 |
+
target_list: List[torch.Tensor],
|
215 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
216 |
+
B, T, C = x.shape
|
217 |
+
assert all((
|
218 |
+
self.config.mask_prob_audio == self.config.mask_prob_image,
|
219 |
+
self.config.mask_length_audio == self.config.mask_length_image,
|
220 |
+
)), "masking prob/length for image/audio be same for feature masking"
|
221 |
+
|
222 |
+
mask_prob = self.config.mask_prob_audio
|
223 |
+
mask_length = self.config.mask_length_image
|
224 |
+
if mask_prob > 0:
|
225 |
+
mask_indices, _, _, _ = compute_mask_indices(
|
226 |
+
(B, T),
|
227 |
+
padding_mask,
|
228 |
+
mask_prob,
|
229 |
+
mask_length,
|
230 |
+
self.config.mask_selection,
|
231 |
+
self.config.mask_other,
|
232 |
+
min_masks=2,
|
233 |
+
no_overlap=self.config.no_mask_overlap,
|
234 |
+
min_space=self.config.mask_min_space,
|
235 |
+
)
|
236 |
+
mask_indices = torch.from_numpy(mask_indices).to(x.device)
|
237 |
+
x[mask_indices] = self.mask_emb
|
238 |
+
else:
|
239 |
+
mask_indices = None
|
240 |
+
|
241 |
+
if self.config.mask_channel_prob > 0:
|
242 |
+
mask_channel_indices, _, _, _ = compute_mask_indices(
|
243 |
+
(B, C),
|
244 |
+
None,
|
245 |
+
self.config.mask_channel_prob,
|
246 |
+
self.config.mask_channel_length,
|
247 |
+
self.config.mask_channel_selection,
|
248 |
+
self.config.mask_channel_other,
|
249 |
+
no_overlap=self.config.no_mask_channel_overlap,
|
250 |
+
min_space=self.config.mask_channel_min_space,
|
251 |
+
)
|
252 |
+
mask_channel_indices = (
|
253 |
+
torch.from_numpy(mask_channel_indices)
|
254 |
+
.to(x.device)
|
255 |
+
.unsqueeze(1)
|
256 |
+
.expand(-1, T, -1)
|
257 |
+
)
|
258 |
+
x[mask_channel_indices] = 0
|
259 |
+
|
260 |
+
return x, mask_indices
|
261 |
+
|
262 |
+
def forward_features(
|
263 |
+
self,
|
264 |
+
source: Dict[str, torch.Tensor],
|
265 |
+
modality: str,
|
266 |
+
) -> torch.Tensor:
|
267 |
+
extractor = eval(f"self.feature_extractor_{modality}")
|
268 |
+
if self.config.feature_grad_mult > 0:
|
269 |
+
features = extractor(source)
|
270 |
+
if self.config.feature_grad_mult != 1.0:
|
271 |
+
features = GradMultiply.apply(features, self.config.feature_grad_mult)
|
272 |
+
else:
|
273 |
+
with torch.no_grad():
|
274 |
+
features = extractor(source)
|
275 |
+
return features
|
276 |
+
|
277 |
+
def forward_targets(
|
278 |
+
self,
|
279 |
+
features: torch.Tensor,
|
280 |
+
mask_indices: torch.Tensor,
|
281 |
+
target_list: List[torch.Tensor],
|
282 |
+
) -> Tuple[torch.Tensor, torch.Tensor, List[torch.Tensor]]:
|
283 |
+
# Trim features to ensure labels exist and then get aligned labels
|
284 |
+
feat_tsz = features.size(2)
|
285 |
+
targ_tsz = min([t.size(1) for t in target_list])
|
286 |
+
if self.feat2tar_ratio * feat_tsz > targ_tsz:
|
287 |
+
feat_tsz = int(targ_tsz / self.feat2tar_ratio)
|
288 |
+
features = features[..., :feat_tsz]
|
289 |
+
if mask_indices is not None:
|
290 |
+
mask_indices = mask_indices[..., :feat_tsz]
|
291 |
+
target_inds = torch.arange(feat_tsz).float() * self.feat2tar_ratio
|
292 |
+
target_list = [t[:, target_inds.long()] for t in target_list]
|
293 |
+
return features, mask_indices, target_list
|
294 |
+
|
295 |
+
def forward_padding_mask(
|
296 |
+
self,
|
297 |
+
features: torch.Tensor,
|
298 |
+
padding_mask: torch.Tensor,
|
299 |
+
) -> torch.Tensor:
|
300 |
+
extra = padding_mask.size(1) % features.size(1)
|
301 |
+
if extra > 0:
|
302 |
+
padding_mask = padding_mask[:, :-extra]
|
303 |
+
padding_mask = padding_mask.view(padding_mask.size(0), features.size(1), -1)
|
304 |
+
padding_mask = padding_mask.all(-1)
|
305 |
+
return padding_mask
|
306 |
+
|
307 |
+
def compute_logits(self, feats: torch.Tensor, emb_mat: torch.Tensor) -> torch.Tensor:
|
308 |
+
# feats: [B, T, F], emb_mat: [V, F]
|
309 |
+
if self.config.sim_type == "dot":
|
310 |
+
logits = torch.matmul(feats, emb_mat.transpose(0, 1))
|
311 |
+
elif self.config.sim_type == "cosine":
|
312 |
+
batch_size, timesteps, emb_dim = feats.size()
|
313 |
+
feats_ = feats.view(-1, emb_dim)
|
314 |
+
# [B*T, V]
|
315 |
+
nom = (feats_.unsqueeze(dim=1) * emb_mat.unsqueeze(dim=0)).sum(dim=-1)
|
316 |
+
# [B*T, V]
|
317 |
+
denom = (
|
318 |
+
(feats_**2).sum(dim=-1).sqrt().unsqueeze(dim=1)
|
319 |
+
* (emb_mat**2).sum(dim=-1).sqrt().unsqueeze(dim=0)
|
320 |
+
)
|
321 |
+
logits = (nom / denom.clamp(min=1e-6)).view(batch_size, timesteps, -1)
|
322 |
+
else:
|
323 |
+
raise NotImplementedError
|
324 |
+
logits = logits / self.config.logit_temp
|
325 |
+
return logits
|
326 |
+
|
327 |
+
def forward(
|
328 |
+
self,
|
329 |
+
source: Dict[str, torch.Tensor],
|
330 |
+
target_list: Optional[List[torch.Tensor]] = None,
|
331 |
+
padding_mask: Optional[torch.Tensor] = None,
|
332 |
+
mask: bool = True,
|
333 |
+
features_only: bool = False,
|
334 |
+
output_layer: Optional[int] = None,
|
335 |
+
) -> Dict[str, torch.Tensor]:
|
336 |
+
"""output layer is 1-based"""
|
337 |
+
src_audio, src_video = source["audio"], source["video"]
|
338 |
+
if mask and self.masking_type == "input":
|
339 |
+
src_video, mask_indices_video = self.apply_input_mask(
|
340 |
+
src_video, padding_mask, target_list
|
341 |
+
)
|
342 |
+
src_audio, mask_indices_audio = self.apply_input_mask(
|
343 |
+
src_audio, padding_mask, target_list
|
344 |
+
)
|
345 |
+
mask_indices = torch.logical_or(mask_indices_audio, mask_indices_video)
|
346 |
+
else:
|
347 |
+
src_audio, src_video, mask_indices = src_audio, src_video, None
|
348 |
+
|
349 |
+
# [B, F, T]
|
350 |
+
features_audio = self.forward_features(src_audio, modality="audio")
|
351 |
+
features_video = self.forward_features(src_video, modality="video")
|
352 |
+
|
353 |
+
if self.training:
|
354 |
+
modality_drop_prob, audio_drop_prob = np.random.random(), np.random.random()
|
355 |
+
if modality_drop_prob < self.config.modality_dropout:
|
356 |
+
if audio_drop_prob < self.config.audio_dropout:
|
357 |
+
features_audio = 0 * features_audio
|
358 |
+
else:
|
359 |
+
features_video = 0 * features_video
|
360 |
+
|
361 |
+
if self.config.modality_fuse == "concat":
|
362 |
+
features = torch.cat([features_audio, features_video], dim=1)
|
363 |
+
elif self.config.modality_fuse == "add":
|
364 |
+
features = features_audio + features_video
|
365 |
+
|
366 |
+
if target_list is not None:
|
367 |
+
features, mask_indices, target_list = self.forward_targets(
|
368 |
+
features, mask_indices, target_list
|
369 |
+
)
|
370 |
+
|
371 |
+
features_pen = features.float().pow(2).mean()
|
372 |
+
|
373 |
+
features = features.transpose(1, 2)
|
374 |
+
features = self.layer_norm(features)
|
375 |
+
|
376 |
+
if padding_mask is not None:
|
377 |
+
padding_mask = self.forward_padding_mask(features, padding_mask)
|
378 |
+
|
379 |
+
if self.post_extract_proj is not None:
|
380 |
+
features = self.post_extract_proj(features)
|
381 |
+
|
382 |
+
features = self.dropout_input(features)
|
383 |
+
if self.config.masking_type == "feature" and mask:
|
384 |
+
x, mask_indices = self.apply_feature_mask(
|
385 |
+
features, padding_mask, target_list
|
386 |
+
)
|
387 |
+
else:
|
388 |
+
x = features
|
389 |
+
|
390 |
+
# feature: (B, T, D), float
|
391 |
+
# target: (B, T), long
|
392 |
+
# x: (B, T, D), float
|
393 |
+
# padding_mask: (B, T), bool
|
394 |
+
# mask_indices: (B, T), bool
|
395 |
+
x, _ = self.encoder(
|
396 |
+
x,
|
397 |
+
padding_mask=padding_mask,
|
398 |
+
layer=None if output_layer is None else output_layer - 1,
|
399 |
+
)
|
400 |
+
|
401 |
+
if features_only:
|
402 |
+
return {"x": x, "padding_mask": padding_mask, "features": features}
|
403 |
+
|
404 |
+
label_embs_list = self.label_embs_concat.split(self.num_classes, 0)
|
405 |
+
proj_x = self.final_proj(x)
|
406 |
+
if self.config.untie_final_proj:
|
407 |
+
proj_x_list = proj_x.chunk(len(self.num_classes), dim=-1)
|
408 |
+
else:
|
409 |
+
proj_x_list = [proj_x for _ in self.num_classes]
|
410 |
+
|
411 |
+
# [[B*T, V]]
|
412 |
+
logit_list = [
|
413 |
+
self.compute_logits(proj, emb).view(-1, num_class)
|
414 |
+
for proj, emb, num_class in zip(
|
415 |
+
proj_x_list, label_embs_list, self.num_classes
|
416 |
+
)
|
417 |
+
]
|
418 |
+
|
419 |
+
mask = torch.logical_and(mask_indices, ~padding_mask).view(-1)
|
420 |
+
unmask = torch.logical_and(~mask_indices, ~padding_mask).view(-1) # [B*T]
|
421 |
+
logit_m_list = [logit[mask] for logit in logit_list]
|
422 |
+
logit_u_list = [logit[unmask] for logit in logit_list]
|
423 |
+
target_m_list = [target.view(-1)[mask].long() for target in target_list]
|
424 |
+
target_u_list = [target.view(-1)[unmask].long() for target in target_list]
|
425 |
+
|
426 |
+
return {
|
427 |
+
"logit_m_list": logit_m_list,
|
428 |
+
"logit_u_list": logit_u_list,
|
429 |
+
"target_m_list": target_m_list,
|
430 |
+
"target_u_list": target_u_list,
|
431 |
+
"padding_mask": padding_mask,
|
432 |
+
"features_pen": features_pen,
|
433 |
+
}
|
434 |
+
|
435 |
+
def extract_features(
|
436 |
+
self,
|
437 |
+
source: Dict[str, torch.Tensor],
|
438 |
+
padding_mask: Optional[torch.Tensor] = None,
|
439 |
+
mask: bool = False,
|
440 |
+
ret_conv: bool = False,
|
441 |
+
output_layer: Optional[int] = None,
|
442 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
443 |
+
res = self.forward(
|
444 |
+
source,
|
445 |
+
padding_mask=padding_mask,
|
446 |
+
mask=mask,
|
447 |
+
features_only=True,
|
448 |
+
output_layer=output_layer,
|
449 |
+
)
|
450 |
+
feature = res["features"] if ret_conv else res["x"]
|
451 |
+
return feature, res["padding_mask"]
|
452 |
+
|
453 |
+
def extract_units(
|
454 |
+
self,
|
455 |
+
source: Dict[str, torch.Tensor],
|
456 |
+
padding_mask: torch.Tensor = None,
|
457 |
+
mask: bool = False,
|
458 |
+
ret_conv: bool = False,
|
459 |
+
output_layer: Optional[int] = None,
|
460 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
461 |
+
res = self.forward(
|
462 |
+
source,
|
463 |
+
padding_mask=padding_mask,
|
464 |
+
mask=mask,
|
465 |
+
features_only=True,
|
466 |
+
output_layer=None,
|
467 |
+
)
|
468 |
+
|
469 |
+
feature = res["features"] if ret_conv else res["x"]
|
470 |
+
proj_x = self.final_proj(feature)
|
471 |
+
# B T
|
472 |
+
units = (
|
473 |
+
torch
|
474 |
+
.matmul(proj_x, self.label_embs_concat.transpose(0, 1))
|
475 |
+
.argmax(dim=-1)
|
476 |
+
)
|
477 |
+
return units
|
478 |
+
|
479 |
+
def extract_finetune(
|
480 |
+
self,
|
481 |
+
source: Dict[str, torch.Tensor],
|
482 |
+
padding_mask: torch.Tensor = None,
|
483 |
+
mask: bool = False,
|
484 |
+
ret_conv: bool = False,
|
485 |
+
output_layer: Optional[int] = None,
|
486 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
487 |
+
src_audio, src_video = source["audio"], source["video"]
|
488 |
+
if mask and self.config.masking_type == "input":
|
489 |
+
src_video, _ = self.apply_input_mask(
|
490 |
+
src_video, padding_mask, target_list=None
|
491 |
+
)
|
492 |
+
src_audio, _ = self.apply_input_mask(
|
493 |
+
src_audio, padding_mask, target_list=None
|
494 |
+
)
|
495 |
+
else:
|
496 |
+
src_audio, src_video, _ = src_audio, src_video, None
|
497 |
+
|
498 |
+
# features: [B, F, T]
|
499 |
+
if src_audio is not None and src_video is None:
|
500 |
+
features_audio = self.forward_features(
|
501 |
+
src_audio, modality="audio"
|
502 |
+
)
|
503 |
+
features_video = features_audio.new_zeros(
|
504 |
+
features_audio.size(0),
|
505 |
+
self.encoder_embed_dim,
|
506 |
+
features_audio.size(-1)
|
507 |
+
)
|
508 |
+
elif src_audio is None and src_video is not None:
|
509 |
+
features_video = self.forward_features(src_video, modality="video")
|
510 |
+
features_audio = features_video.new_zeros(
|
511 |
+
features_video.size(0),
|
512 |
+
self.encoder_embed_dim,
|
513 |
+
features_video.size(-1)
|
514 |
+
)
|
515 |
+
elif src_audio is not None and src_video is not None:
|
516 |
+
features_video = self.forward_features(src_video, modality="video")
|
517 |
+
features_audio = self.forward_features(
|
518 |
+
src_audio, modality="audio"
|
519 |
+
)
|
520 |
+
|
521 |
+
if self.config.modality_fuse == "concat":
|
522 |
+
features = torch.cat([features_audio, features_video], dim=1)
|
523 |
+
elif self.config.modality_fuse == "add":
|
524 |
+
features = features_audio + features_video
|
525 |
+
|
526 |
+
features = features.transpose(1, 2)
|
527 |
+
features = self.layer_norm(features)
|
528 |
+
unmasked_features = features.clone()
|
529 |
+
|
530 |
+
if padding_mask is not None:
|
531 |
+
padding_mask = self.forward_padding_mask(features, padding_mask)
|
532 |
+
|
533 |
+
if self.post_extract_proj is not None:
|
534 |
+
features = self.post_extract_proj(features)
|
535 |
+
|
536 |
+
features = self.dropout_input(features)
|
537 |
+
unmasked_features = self.dropout_features(unmasked_features)
|
538 |
+
|
539 |
+
# feature: (B, T, D), float
|
540 |
+
# target: (B, T), long
|
541 |
+
# x: (B, T, D), float
|
542 |
+
# padding_mask: (B, T), bool
|
543 |
+
# mask_indices: (B, T), bool
|
544 |
+
x, _ = self.encoder(
|
545 |
+
features,
|
546 |
+
padding_mask=padding_mask,
|
547 |
+
layer=None if output_layer is None else output_layer - 1,
|
548 |
+
)
|
549 |
+
|
550 |
+
return x, padding_mask
|
551 |
+
|
552 |
+
def get_extra_losses(
|
553 |
+
self,
|
554 |
+
net_output: Dict[str, torch.Tensor],
|
555 |
+
) -> Tuple[List[torch.Tensor], List[str]]:
|
556 |
+
extra_losses = []
|
557 |
+
names = []
|
558 |
+
if "features_pen" in net_output:
|
559 |
+
extra_losses.append(net_output["features_pen"])
|
560 |
+
names.append("features_pen")
|
561 |
+
|
562 |
+
return extra_losses, names
|
563 |
+
|
564 |
+
def remove_pretraining_modules(self) -> None:
|
565 |
+
self.target_glu = None
|
566 |
+
self.final_proj = None
|
567 |
+
|
568 |
+
def compute_nce(
|
569 |
+
self,
|
570 |
+
x: torch.Tensor,
|
571 |
+
pos: torch.Tensor,
|
572 |
+
negs: torch.Tensor,
|
573 |
+
) -> torch.Tensor:
|
574 |
+
neg_is_pos = (pos == negs).all(-1)
|
575 |
+
pos = pos.unsqueeze(0)
|
576 |
+
targets = torch.cat([pos, negs], dim=0)
|
577 |
+
|
578 |
+
logits = torch.cosine_similarity(x.float(), targets.float(), dim=-1).type_as(x)
|
579 |
+
logits /= self.config.logit_temp
|
580 |
+
if neg_is_pos.any():
|
581 |
+
logits[1:][neg_is_pos] = float("-inf")
|
582 |
+
logits = logits.transpose(0, 1) # (num_x, num_cls+1)
|
583 |
+
return logits
|
584 |
+
|
585 |
+
|
586 |
+
class HubertEncoderWrapper(nn.Module):
|
587 |
+
def __init__(
|
588 |
+
self,
|
589 |
+
config: AVHubertConfig,
|
590 |
+
dictionaries: List = [None],
|
591 |
+
) -> None:
|
592 |
+
super().__init__()
|
593 |
+
self.w2v_model = AVHubertModel(config, dictionaries)
|
594 |
+
|
595 |
+
def forward(
|
596 |
+
self,
|
597 |
+
source: Dict[str, torch.Tensor],
|
598 |
+
padding_mask: torch.Tensor,
|
599 |
+
**kwargs,
|
600 |
+
) -> Dict[str, torch.Tensor]:
|
601 |
+
w2v_args = {
|
602 |
+
"source": source,
|
603 |
+
"padding_mask": padding_mask,
|
604 |
+
}
|
605 |
+
x, padding_mask = self.w2v_model.extract_finetune(**w2v_args)
|
606 |
+
return {
|
607 |
+
"encoder_out": x, # T x B x C
|
608 |
+
"encoder_padding_mask": padding_mask, # B x T
|
609 |
+
"padding_mask": padding_mask,
|
610 |
+
}
|
611 |
+
|
612 |
+
def reorder_encoder_out(
|
613 |
+
self,
|
614 |
+
encoder_out: Dict[str, torch.Tensor],
|
615 |
+
new_order: torch.Tensor,
|
616 |
+
) -> Dict[str, torch.Tensor]:
|
617 |
+
if encoder_out["encoder_out"] is not None:
|
618 |
+
encoder_out["encoder_out"] = encoder_out["encoder_out"].index_select(
|
619 |
+
1, new_order
|
620 |
+
)
|
621 |
+
if encoder_out["encoder_padding_mask"] is not None:
|
622 |
+
encoder_out["encoder_padding_mask"] = encoder_out[
|
623 |
+
"encoder_padding_mask"
|
624 |
+
].index_select(0, new_order)
|
625 |
+
if encoder_out["padding_mask"] is not None:
|
626 |
+
encoder_out["padding_mask"] = encoder_out["padding_mask"].index_select(
|
627 |
+
0, new_order
|
628 |
+
)
|
629 |
+
return encoder_out
|
630 |
+
|
631 |
+
|
632 |
+
class AVSPLLMModel(PreTrainedModel):
|
633 |
+
config_class = AVSPLLMConfig
|
634 |
+
|
635 |
+
def __init__(
|
636 |
+
self,
|
637 |
+
config: AVSPLLMConfig = AVSPLLMConfig(),
|
638 |
+
dictionaries: List = [None],
|
639 |
+
) -> None:
|
640 |
+
super().__init__(config=config)
|
641 |
+
self.encoder = HubertEncoderWrapper(config, dictionaries)
|
642 |
+
self.encoder.w2v_model.remove_pretraining_modules()
|
643 |
+
|
644 |
+
self.avfeat_to_llm = nn.Linear(
|
645 |
+
config.encoder_embed_dim, config.decoder_embed_dim
|
646 |
+
)
|
647 |
+
|
648 |
+
bnb_config = BitsAndBytesConfig(
|
649 |
+
load_in_4bit=True,
|
650 |
+
bnb_4bit_use_double_quant=True,
|
651 |
+
bnb_4bit_quant_type="nf4",
|
652 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
653 |
+
)
|
654 |
+
decoder_4bit = AutoModelForCausalLM.from_pretrained(
|
655 |
+
config.llm_ckpt_path,
|
656 |
+
quantization_config=bnb_config,
|
657 |
+
)
|
658 |
+
lora_config = LoraConfig(
|
659 |
+
r=16,
|
660 |
+
lora_alpha=32,
|
661 |
+
target_modules=["q_proj", "v_proj", "k_proj"],
|
662 |
+
lora_dropout=0.05,
|
663 |
+
bias="none",
|
664 |
+
task_type="CAUSAL_LM",
|
665 |
+
)
|
666 |
+
self.decoder = get_peft_model(decoder_4bit, lora_config)
|
667 |
+
self.decoder.print_trainable_parameters()
|
668 |
+
|
669 |
+
def forward(
|
670 |
+
self,
|
671 |
+
source: Dict[str, torch.Tensor],
|
672 |
+
target_list: torch.Tensor,
|
673 |
+
padding_mask: torch.Tensor,
|
674 |
+
**kwargs,
|
675 |
+
) -> CausalLMOutputWithPast:
|
676 |
+
ft = self.config.freeze_finetune_updates <= kwargs.get("num_updates", -1)
|
677 |
+
with torch.no_grad() if not ft else contextlib.ExitStack():
|
678 |
+
output = self.encoder(source, padding_mask, **kwargs)
|
679 |
+
|
680 |
+
output["encoder_out"] = self.avfeat_to_llm(output["encoder_out"])
|
681 |
+
cluster_counts = source["cluster_counts"][0] # tensor list
|
682 |
+
|
683 |
+
results_tensor = []
|
684 |
+
start_idx = 0
|
685 |
+
for clutser_num in cluster_counts:
|
686 |
+
end_idx = start_idx + clutser_num
|
687 |
+
slice = output["encoder_out"][:, start_idx:end_idx, :]
|
688 |
+
mean_tensor = torch.mean(slice, dim=1, keepdim=True)
|
689 |
+
results_tensor.append(mean_tensor)
|
690 |
+
start_idx = end_idx
|
691 |
+
|
692 |
+
assert cluster_counts.sum().item() == output["encoder_out"].size()[1], \
|
693 |
+
f"{cluster_counts.sum().item()} != {output['encoder_out'].size()[1]}"
|
694 |
+
|
695 |
+
reduced_enc_out = torch.cat(results_tensor, dim=1)
|
696 |
+
B, T, D = reduced_enc_out.size()
|
697 |
+
|
698 |
+
instruction = source["text"]
|
699 |
+
instruction_embedding = self.decoder.model.model.embed_tokens(instruction)
|
700 |
+
|
701 |
+
labels = target_list.clone()
|
702 |
+
labels_embedding = self.decoder.model.model.embed_tokens(labels)
|
703 |
+
|
704 |
+
llm_input = torch.cat(
|
705 |
+
(instruction_embedding, reduced_enc_out, labels_embedding), dim=1
|
706 |
+
)
|
707 |
+
llm_labels = labels.clone()
|
708 |
+
llm_labels[llm_labels == 0] = -100
|
709 |
+
|
710 |
+
_, instruction_embedding_t, _ = instruction_embedding.size()
|
711 |
+
target_ids = (
|
712 |
+
torch.full((B, T + instruction_embedding_t), -100).long().to(labels.device)
|
713 |
+
)
|
714 |
+
llm_labels = torch.cat((target_ids, llm_labels), dim=1)
|
715 |
+
return self.decoder(
|
716 |
+
inputs_embeds=llm_input, labels=llm_labels, return_dict=True
|
717 |
+
)
|
718 |
+
|
719 |
+
@torch.no_grad()
|
720 |
+
def generate(
|
721 |
+
self,
|
722 |
+
inputs: Optional[Dict[str, torch.Tensor]] = None,
|
723 |
+
generation_config: Optional[GenerationConfig] = None,
|
724 |
+
**kwargs,
|
725 |
+
) -> Any:
|
726 |
+
output = self.encoder(**inputs)
|
727 |
+
output["encoder_out"] = self.avfeat_to_llm(output["encoder_out"])
|
728 |
+
cluster_counts = inputs["source"]["cluster_counts"][0] # tensor list
|
729 |
+
|
730 |
+
results_tensor = []
|
731 |
+
start_idx = 0
|
732 |
+
|
733 |
+
for clutser_num in cluster_counts:
|
734 |
+
end_idx = start_idx + clutser_num
|
735 |
+
slice = output["encoder_out"][:, start_idx:end_idx, :]
|
736 |
+
mean_tensor = torch.mean(slice, dim=1, keepdim=True)
|
737 |
+
results_tensor.append(mean_tensor)
|
738 |
+
start_idx = end_idx
|
739 |
+
|
740 |
+
assert cluster_counts.sum().item() == output["encoder_out"].size()[1]
|
741 |
+
|
742 |
+
reduced_enc_out = torch.cat(results_tensor, dim=1)
|
743 |
+
B, T, D = reduced_enc_out.size()
|
744 |
+
instruction = inputs["source"]["text"]
|
745 |
+
instruction_embedding = self.decoder.model.model.embed_tokens(instruction)
|
746 |
+
llm_input = torch.cat((instruction_embedding, reduced_enc_out), dim=1)
|
747 |
+
|
748 |
+
self.decoder.config.use_cache = True
|
749 |
+
return self.decoder.generate(
|
750 |
+
inputs_embeds=llm_input,
|
751 |
+
**generation_config,
|
752 |
+
**kwargs,
|
753 |
+
)
|
resnet.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from collections import OrderedDict
|
5 |
+
|
6 |
+
|
7 |
+
def conv3x3(in_channels: int, out_channels: int, stride: int = 1) -> nn.Conv2d:
|
8 |
+
return nn.Conv2d(
|
9 |
+
in_channels=in_channels,
|
10 |
+
out_channels=out_channels,
|
11 |
+
kernel_size=3,
|
12 |
+
stride=stride,
|
13 |
+
padding=1,
|
14 |
+
bias=False
|
15 |
+
)
|
16 |
+
|
17 |
+
|
18 |
+
def downsample_basic_block(
|
19 |
+
in_channels: int,
|
20 |
+
out_channels: int,
|
21 |
+
stride: int,
|
22 |
+
) -> nn.Sequential:
|
23 |
+
return nn.Sequential(
|
24 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
|
25 |
+
nn.BatchNorm2d(out_channels),
|
26 |
+
)
|
27 |
+
|
28 |
+
|
29 |
+
def downsample_basic_block_v2(
|
30 |
+
in_channels: int,
|
31 |
+
out_channels: int,
|
32 |
+
stride: int,
|
33 |
+
) -> nn.Sequential:
|
34 |
+
return nn.Sequential(
|
35 |
+
nn.AvgPool2d(
|
36 |
+
kernel_size=stride,
|
37 |
+
stride=stride,
|
38 |
+
ceil_mode=True,
|
39 |
+
count_include_pad=False,
|
40 |
+
),
|
41 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=False),
|
42 |
+
nn.BatchNorm2d(out_channels),
|
43 |
+
)
|
44 |
+
|
45 |
+
|
46 |
+
class BasicBlock(nn.Module):
|
47 |
+
expansion = 1
|
48 |
+
|
49 |
+
def __init__(
|
50 |
+
self,
|
51 |
+
in_channels: int,
|
52 |
+
channels: int,
|
53 |
+
stride: int = 1,
|
54 |
+
downsample: nn.Sequential = None,
|
55 |
+
relu_type: str = "relu",
|
56 |
+
) -> None:
|
57 |
+
super(BasicBlock, self).__init__()
|
58 |
+
assert relu_type in ["relu", "prelu"]
|
59 |
+
|
60 |
+
self.conv1 = conv3x3(in_channels, channels, stride)
|
61 |
+
self.bn1 = nn.BatchNorm2d(channels)
|
62 |
+
|
63 |
+
if relu_type == "relu":
|
64 |
+
self.relu1 = nn.ReLU(inplace=True)
|
65 |
+
self.relu2 = nn.ReLU(inplace=True)
|
66 |
+
elif relu_type == "prelu":
|
67 |
+
self.relu1 = nn.PReLU(num_parameters=channels)
|
68 |
+
self.relu2 = nn.PReLU(num_parameters=channels)
|
69 |
+
else:
|
70 |
+
raise Exception("relu type not implemented")
|
71 |
+
|
72 |
+
self.conv2 = conv3x3(channels, channels)
|
73 |
+
self.bn2 = nn.BatchNorm2d(channels)
|
74 |
+
|
75 |
+
self.downsample = downsample
|
76 |
+
self.stride = stride
|
77 |
+
|
78 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
79 |
+
residual = x
|
80 |
+
out = self.conv1(x)
|
81 |
+
out = self.bn1(out)
|
82 |
+
out = self.relu1(out)
|
83 |
+
out = self.conv2(out)
|
84 |
+
out = self.bn2(out)
|
85 |
+
if self.downsample is not None:
|
86 |
+
residual = self.downsample(x)
|
87 |
+
out += residual
|
88 |
+
out = self.relu2(out)
|
89 |
+
return out
|
90 |
+
|
91 |
+
|
92 |
+
class ResNet(nn.Module):
|
93 |
+
def __init__(
|
94 |
+
self,
|
95 |
+
block: nn.Module,
|
96 |
+
layers: list,
|
97 |
+
relu_type: str = "relu",
|
98 |
+
gamma_zero: bool = False,
|
99 |
+
avg_pool_downsample: bool = False,
|
100 |
+
) -> None:
|
101 |
+
self.in_channels = 64
|
102 |
+
self.relu_type = relu_type
|
103 |
+
self.gamma_zero = gamma_zero
|
104 |
+
self.downsample_block = (
|
105 |
+
downsample_basic_block_v2 if avg_pool_downsample else downsample_basic_block
|
106 |
+
)
|
107 |
+
|
108 |
+
super(ResNet, self).__init__()
|
109 |
+
self.layer1 = self._make_layer(block, 64, layers[0])
|
110 |
+
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
|
111 |
+
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
|
112 |
+
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
|
113 |
+
self.avgpool = nn.AdaptiveAvgPool2d(1)
|
114 |
+
|
115 |
+
for m in self.modules():
|
116 |
+
if isinstance(m, nn.Conv2d):
|
117 |
+
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
118 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / n))
|
119 |
+
elif isinstance(m, nn.BatchNorm2d):
|
120 |
+
m.weight.data.fill_(1)
|
121 |
+
m.bias.data.zero_()
|
122 |
+
|
123 |
+
if self.gamma_zero:
|
124 |
+
for m in self.modules():
|
125 |
+
if isinstance(m, BasicBlock):
|
126 |
+
m.bn2.weight.data.zero_()
|
127 |
+
|
128 |
+
def _make_layer(
|
129 |
+
self,
|
130 |
+
block: nn.Module,
|
131 |
+
channels: int,
|
132 |
+
n_blocks: int,
|
133 |
+
stride: int = 1,
|
134 |
+
) -> nn.Sequential:
|
135 |
+
downsample = None
|
136 |
+
if stride != 1 or self.in_channels != channels * block.expansion:
|
137 |
+
downsample = self.downsample_block(
|
138 |
+
in_channels=self.in_channels,
|
139 |
+
out_channels=channels * block.expansion,
|
140 |
+
stride=stride,
|
141 |
+
)
|
142 |
+
|
143 |
+
layers = [
|
144 |
+
block(
|
145 |
+
self.in_channels, channels, stride, downsample, relu_type=self.relu_type
|
146 |
+
)
|
147 |
+
]
|
148 |
+
self.in_channels = channels * block.expansion
|
149 |
+
for _ in range(1, n_blocks):
|
150 |
+
layers.append(block(self.in_channels, channels, relu_type=self.relu_type))
|
151 |
+
|
152 |
+
return nn.Sequential(*layers)
|
153 |
+
|
154 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
155 |
+
x = self.layer1(x)
|
156 |
+
x = self.layer2(x)
|
157 |
+
x = self.layer3(x)
|
158 |
+
x = self.layer4(x)
|
159 |
+
x = self.avgpool(x)
|
160 |
+
x = x.view(x.size(0), -1)
|
161 |
+
return x
|
162 |
+
|
163 |
+
|
164 |
+
class ResNetEncoder(nn.Module):
|
165 |
+
def __init__(self, relu_type: str, weight_file: str = None) -> None:
|
166 |
+
super(ResNetEncoder, self).__init__()
|
167 |
+
self.frontend_out = 64
|
168 |
+
self.backend_out = 512
|
169 |
+
frontend_relu = (
|
170 |
+
nn.PReLU(num_parameters=self.frontend_out)
|
171 |
+
if relu_type == "prelu"
|
172 |
+
else nn.ReLU()
|
173 |
+
)
|
174 |
+
|
175 |
+
self.frontend3D = nn.Sequential(
|
176 |
+
nn.Conv3d(
|
177 |
+
1,
|
178 |
+
self.frontend_out,
|
179 |
+
kernel_size=(5, 7, 7),
|
180 |
+
stride=(1, 2, 2),
|
181 |
+
padding=(2, 3, 3),
|
182 |
+
bias=False,
|
183 |
+
),
|
184 |
+
nn.BatchNorm3d(self.frontend_out),
|
185 |
+
frontend_relu,
|
186 |
+
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1)),
|
187 |
+
)
|
188 |
+
self.trunk = ResNet(BasicBlock, [2, 2, 2, 2], relu_type=relu_type)
|
189 |
+
|
190 |
+
if weight_file is not None:
|
191 |
+
model_state_dict = torch.load(weight_file, map_location=torch.device("cpu"))
|
192 |
+
model_state_dict = model_state_dict["model_state_dict"]
|
193 |
+
frontend_state_dict, trunk_state_dict = OrderedDict(), OrderedDict()
|
194 |
+
for key, val in model_state_dict.items():
|
195 |
+
new_key = ".".join(key.split(".")[1:])
|
196 |
+
if "frontend3D" in key:
|
197 |
+
frontend_state_dict[new_key] = val
|
198 |
+
if "trunk" in key:
|
199 |
+
trunk_state_dict[new_key] = val
|
200 |
+
self.frontend3D.load_state_dict(frontend_state_dict)
|
201 |
+
self.trunk.load_state_dict(trunk_state_dict)
|
202 |
+
|
203 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
204 |
+
B, C, T, H, W = x.size()
|
205 |
+
x = self.frontend3D(x)
|
206 |
+
Tnew = x.shape[2]
|
207 |
+
x = self.convert_3D_to_2D(x)
|
208 |
+
x = self.trunk(x)
|
209 |
+
x = x.view(B, Tnew, x.size(1))
|
210 |
+
x = x.transpose(1, 2).contiguous()
|
211 |
+
return x
|
212 |
+
|
213 |
+
def convert_3D_to_2D(self, x: torch.Tensor) -> torch.Tensor:
|
214 |
+
n_batches, n_channels, s_time, sx, sy = x.shape
|
215 |
+
x = x.transpose(1, 2).contiguous()
|
216 |
+
return x.reshape(n_batches * s_time, n_channels, sx, sy)
|
utils.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from typing import Tuple, Optional
|
4 |
+
|
5 |
+
|
6 |
+
def find_runs(x: np.ndarray) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
7 |
+
"""Find runs of consecutive items in an array."""
|
8 |
+
|
9 |
+
# ensure array
|
10 |
+
x = np.asanyarray(x)
|
11 |
+
if x.ndim != 1:
|
12 |
+
raise ValueError("only 1D array supported")
|
13 |
+
n = x.shape[0]
|
14 |
+
|
15 |
+
# handle empty array
|
16 |
+
if n == 0:
|
17 |
+
return np.array([]), np.array([]), np.array([])
|
18 |
+
else:
|
19 |
+
# find run starts
|
20 |
+
loc_run_start = np.empty(n, dtype=bool)
|
21 |
+
loc_run_start[0] = True
|
22 |
+
np.not_equal(x[:-1], x[1:], out=loc_run_start[1:])
|
23 |
+
run_starts = np.nonzero(loc_run_start)[0]
|
24 |
+
|
25 |
+
# find run values
|
26 |
+
run_values = x[loc_run_start]
|
27 |
+
|
28 |
+
# find run lengths
|
29 |
+
run_lengths = np.diff(np.append(run_starts, n))
|
30 |
+
|
31 |
+
return run_values, run_starts, run_lengths
|
32 |
+
|
33 |
+
|
34 |
+
def compute_mask_indices(
|
35 |
+
shape: Tuple[int, int],
|
36 |
+
padding_mask: Optional[torch.Tensor],
|
37 |
+
mask_prob: float,
|
38 |
+
mask_length: int,
|
39 |
+
mask_type: str = "static",
|
40 |
+
mask_other: float = 0.0,
|
41 |
+
min_masks: int = 0,
|
42 |
+
no_overlap: bool = False,
|
43 |
+
min_space: int = 0,
|
44 |
+
) -> np.ndarray:
|
45 |
+
"""
|
46 |
+
Computes random mask spans for a given shape
|
47 |
+
Args:
|
48 |
+
shape: the the shape for which to compute masks.
|
49 |
+
should be of size 2 where first element is batch size and 2nd is timesteps
|
50 |
+
padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements
|
51 |
+
mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by
|
52 |
+
number of timesteps divided by length of mask span to mask approximately this percentage of all elements.
|
53 |
+
however due to overlaps, the actual number will be smaller (unless no_overlap is True)
|
54 |
+
mask_type: how to compute mask lengths
|
55 |
+
static = fixed size
|
56 |
+
uniform = sample from uniform distribution [mask_other, mask_length*2]
|
57 |
+
normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element
|
58 |
+
poisson = sample from possion distribution with lambda = mask length
|
59 |
+
min_masks: minimum number of masked spans
|
60 |
+
no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping
|
61 |
+
min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans
|
62 |
+
"""
|
63 |
+
bsz, all_sz = shape
|
64 |
+
mask = np.full((bsz, all_sz), False)
|
65 |
+
|
66 |
+
all_num_mask = int(
|
67 |
+
# add a random number for probabilistic rounding
|
68 |
+
mask_prob * all_sz / float(mask_length)
|
69 |
+
+ np.random.rand()
|
70 |
+
)
|
71 |
+
|
72 |
+
all_num_mask = max(min_masks, all_num_mask)
|
73 |
+
|
74 |
+
mask_idcs = []
|
75 |
+
for i in range(bsz):
|
76 |
+
if padding_mask is not None:
|
77 |
+
sz = all_sz - padding_mask[i].long().sum().item()
|
78 |
+
num_mask = int(
|
79 |
+
# add a random number for probabilistic rounding
|
80 |
+
mask_prob * sz / float(mask_length)
|
81 |
+
+ np.random.rand()
|
82 |
+
)
|
83 |
+
num_mask = max(min_masks, num_mask)
|
84 |
+
else:
|
85 |
+
sz = all_sz
|
86 |
+
num_mask = all_num_mask
|
87 |
+
|
88 |
+
if mask_type == "static":
|
89 |
+
lengths = np.full(num_mask, mask_length)
|
90 |
+
elif mask_type == "uniform":
|
91 |
+
lengths = np.random.randint(mask_other, mask_length * 2 + 1, size=num_mask)
|
92 |
+
elif mask_type == "normal":
|
93 |
+
lengths = np.random.normal(mask_length, mask_other, size=num_mask)
|
94 |
+
lengths = [max(1, int(round(x))) for x in lengths]
|
95 |
+
elif mask_type == "poisson":
|
96 |
+
lengths = np.random.poisson(mask_length, size=num_mask)
|
97 |
+
lengths = [int(round(x)) for x in lengths]
|
98 |
+
else:
|
99 |
+
raise Exception("unknown mask selection " + mask_type)
|
100 |
+
|
101 |
+
if sum(lengths) == 0:
|
102 |
+
lengths[0] = min(mask_length, sz - 1)
|
103 |
+
|
104 |
+
if no_overlap:
|
105 |
+
mask_idc = []
|
106 |
+
|
107 |
+
def arrange(s, e, length, keep_length):
|
108 |
+
span_start = np.random.randint(s, e - length)
|
109 |
+
mask_idc.extend(span_start + i for i in range(length))
|
110 |
+
|
111 |
+
new_parts = []
|
112 |
+
if span_start - s - min_space >= keep_length:
|
113 |
+
new_parts.append((s, span_start - min_space + 1))
|
114 |
+
if e - span_start - keep_length - min_space > keep_length:
|
115 |
+
new_parts.append((span_start + length + min_space, e))
|
116 |
+
return new_parts
|
117 |
+
|
118 |
+
parts = [(0, sz)]
|
119 |
+
min_length = min(lengths)
|
120 |
+
for length in sorted(lengths, reverse=True):
|
121 |
+
lens = np.fromiter(
|
122 |
+
(e - s if e - s >= length + min_space else 0 for s, e in parts),
|
123 |
+
np.int,
|
124 |
+
)
|
125 |
+
l_sum = np.sum(lens)
|
126 |
+
if l_sum == 0:
|
127 |
+
break
|
128 |
+
probs = lens / np.sum(lens)
|
129 |
+
c = np.random.choice(len(parts), p=probs)
|
130 |
+
s, e = parts.pop(c)
|
131 |
+
parts.extend(arrange(s, e, length, min_length))
|
132 |
+
mask_idc = np.asarray(mask_idc)
|
133 |
+
else:
|
134 |
+
min_len = min(lengths)
|
135 |
+
if sz - min_len <= num_mask:
|
136 |
+
min_len = sz - num_mask - 1
|
137 |
+
|
138 |
+
mask_idc = np.random.choice(sz - min_len, num_mask, replace=False)
|
139 |
+
|
140 |
+
mask_idc = np.asarray(
|
141 |
+
[
|
142 |
+
mask_idc[j] + offset
|
143 |
+
for j in range(len(mask_idc))
|
144 |
+
for offset in range(lengths[j])
|
145 |
+
]
|
146 |
+
)
|
147 |
+
|
148 |
+
mask_idcs.append(np.unique(mask_idc[mask_idc < sz]))
|
149 |
+
|
150 |
+
min_len = min([len(m) for m in mask_idcs])
|
151 |
+
batch_indexes, starts, ends = [], [], []
|
152 |
+
for i, mask_idc in enumerate(mask_idcs):
|
153 |
+
if len(mask_idc) > min_len:
|
154 |
+
mask_idc = np.random.choice(mask_idc, min_len, replace=False)
|
155 |
+
mask[i, mask_idc] = True
|
156 |
+
vals, run_starts, run_lengths = find_runs(mask[i])
|
157 |
+
start_indices, lengths = run_starts[vals == True], run_lengths[vals == True]
|
158 |
+
starts.append(start_indices)
|
159 |
+
ends.append(start_indices + lengths)
|
160 |
+
batch_indexes.append(np.zeros([len(start_indices)]) + i)
|
161 |
+
return (
|
162 |
+
mask,
|
163 |
+
np.concatenate(starts).astype(np.int64),
|
164 |
+
np.concatenate(ends).astype(np.int64),
|
165 |
+
np.concatenate(batch_indexes).astype(np.int64),
|
166 |
+
)
|