|
--- |
|
license: mit |
|
--- |
|
|
|
# FinGPT sentiment analysis task |
|
|
|
## Model info |
|
- Base model: InternLM-20B |
|
- Training method: Instruction Fine-tuning + LoRA |
|
- Task: Sentiment Analysis |
|
|
|
## Packages |
|
``` python |
|
!pip install transformers==4.32.0 peft==0.5.0 |
|
!pip install sentencepiece |
|
!pip install accelerate |
|
!pip install torch |
|
!pip install peft |
|
!pip install datasets |
|
!pip install bitsandbytes |
|
``` |
|
|
|
## Inference: Try the model in Google Colab |
|
``` python |
|
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM, LlamaTokenizerFast |
|
from peft import PeftModel # 0.5.0 |
|
|
|
# Load Models |
|
base_model = "internlm/internlm-20b" |
|
peft_model = "FinGPT/fingpt-sentiment_internlm-20b_lora" |
|
tokenizer = LlamaTokenizerFast.from_pretrained(base_model, trust_remote_code=True) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
model = LlamaForCausalLM.from_pretrained(base_model, trust_remote_code=True, device_map = "cuda:0", load_in_8bit = True,) |
|
model = PeftModel.from_pretrained(model, peft_model) |
|
model = model.eval() |
|
|
|
# Make prompts |
|
prompt = [ |
|
'''Instruction: What is the sentiment of this news? Please choose an answer from {negative/neutral/positive} |
|
Input: FINANCING OF ASPOCOMP 'S GROWTH Aspocomp is aggressively pursuing its growth strategy by increasingly focusing on technologically more demanding HDI printed circuit boards PCBs . |
|
Answer: ''', |
|
'''Instruction: What is the sentiment of this news? Please choose an answer from {negative/neutral/positive} |
|
Input: According to Gran , the company has no plans to move all production to Russia , although that is where the company is growing . |
|
Answer: ''', |
|
'''Instruction: What is the sentiment of this news? Please choose an answer from {negative/neutral/positive} |
|
Input: A tinyurl link takes users to a scamming site promising that users can earn thousands of dollars by becoming a Google ( NASDAQ : GOOG ) Cash advertiser . |
|
Answer: ''', |
|
] |
|
|
|
# Generate results |
|
tokens = tokenizer(prompt, return_tensors='pt', padding=True, max_length=512) |
|
res = model.generate(**tokens, max_length=512) |
|
res_sentences = [tokenizer.decode(i) for i in res] |
|
out_text = [o.split("Answer: ")[1] for o in res_sentences] |
|
|
|
# show results |
|
for sentiment in out_text: |
|
print(sentiment) |
|
|
|
# Output: |
|
# positive |
|
# neutral |
|
# negative |
|
``` |
|
|
|
## Training Script: [Our Code](https://github.com/AI4Finance-Foundation/FinGPT/tree/master/fingpt/FinGPT_Benchmark) |
|
``` |
|
#internlm-20b |
|
deepspeed -i "localhost:2" train_lora.py |
|
--run_name sentiment-internlm-20b-8epochs-lr2e-4-linear |
|
--base_model internlm-20b |
|
--dataset data/fingpt-sentiment-train |
|
--max_length 512 |
|
--batch_size 8 |
|
--learning_rate 2e-4 |
|
--num_epochs 8 |
|
> train_internlm-20b_1gpu_8epochs_lr2e4_bs8_fp16_linear.log 2>&1 |
|
``` |
|
|
|
## inference script |
|
``` |
|
CUDA_VISIBLE_DEVICES=1 python benchmarks.py \ |
|
--dataset fpb,fiqa,tfns,nwgi \ |
|
--base_model internlm-20b \ |
|
--peft_model FinGPT/fingpt-sentiment_internlm-20b_lora \ |
|
--batch_size 1 \ |
|
--max_length 512 \ |
|
--from_remote True |
|
``` |
|
|
|
## Training Data: |
|
|
|
* https://huggingface.co/datasets/FinGPT/fingpt-sentiment-train |
|
- PEFT 0.5.0 |
|
|