--- license: mit --- # FinGPT sentiment analysis task ## Model info - Base model: InternLM-20B - Training method: Instruction Fine-tuning + LoRA - Task: Sentiment Analysis ## Packages ``` python !pip install transformers==4.32.0 peft==0.5.0 !pip install sentencepiece !pip install accelerate !pip install torch !pip install peft !pip install datasets !pip install bitsandbytes ``` ## Inference: Try the model in Google Colab ``` python from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM, LlamaTokenizerFast from peft import PeftModel # 0.5.0 # Load Models base_model = "internlm/internlm-20b" peft_model = "FinGPT/fingpt-sentiment_internlm-20b_lora" tokenizer = LlamaTokenizerFast.from_pretrained(base_model, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token model = LlamaForCausalLM.from_pretrained(base_model, trust_remote_code=True, device_map = "cuda:0", load_in_8bit = True,) model = PeftModel.from_pretrained(model, peft_model) model = model.eval() # Make prompts prompt = [ '''Instruction: What is the sentiment of this news? Please choose an answer from {negative/neutral/positive} Input: FINANCING OF ASPOCOMP 'S GROWTH Aspocomp is aggressively pursuing its growth strategy by increasingly focusing on technologically more demanding HDI printed circuit boards PCBs . Answer: ''', '''Instruction: What is the sentiment of this news? Please choose an answer from {negative/neutral/positive} Input: According to Gran , the company has no plans to move all production to Russia , although that is where the company is growing . Answer: ''', '''Instruction: What is the sentiment of this news? Please choose an answer from {negative/neutral/positive} Input: A tinyurl link takes users to a scamming site promising that users can earn thousands of dollars by becoming a Google ( NASDAQ : GOOG ) Cash advertiser . Answer: ''', ] # Generate results tokens = tokenizer(prompt, return_tensors='pt', padding=True, max_length=512) res = model.generate(**tokens, max_length=512) res_sentences = [tokenizer.decode(i) for i in res] out_text = [o.split("Answer: ")[1] for o in res_sentences] # show results for sentiment in out_text: print(sentiment) # Output: # positive # neutral # negative ``` ## Training Script: [Our Code](https://github.com/AI4Finance-Foundation/FinGPT/tree/master/fingpt/FinGPT_Benchmark) ``` #internlm-20b deepspeed -i "localhost:2" train_lora.py --run_name sentiment-internlm-20b-8epochs-lr2e-4-linear --base_model internlm-20b --dataset data/fingpt-sentiment-train --max_length 512 --batch_size 8 --learning_rate 2e-4 --num_epochs 8 > train_internlm-20b_1gpu_8epochs_lr2e4_bs8_fp16_linear.log 2>&1 ``` ## inference script ``` CUDA_VISIBLE_DEVICES=1 python benchmarks.py \ --dataset fpb,fiqa,tfns,nwgi \ --base_model internlm-20b \ --peft_model FinGPT/fingpt-sentiment_internlm-20b_lora \ --batch_size 1 \ --max_length 512 \ --from_remote True ``` ## Training Data: * https://huggingface.co/datasets/FinGPT/fingpt-sentiment-train - PEFT 0.5.0